scholarly journals 2K1345 Thermal Unfolding Process of Bovine Serum Albumin by FT-IR Spectroscopy

2002 ◽  
Vol 42 (supplement2) ◽  
pp. S130
Author(s):  
K. Murayama ◽  
S. Era ◽  
Y. Ozaki
2019 ◽  
Vol 87 (1) ◽  
pp. 5 ◽  
Author(s):  
Hassan Alhazmi

Proteins play crucial roles in the transportation and distribution of therapeutic substances, including metal ions in living systems. Some metal ions can strongly associate, while others show low affinity towards proteins. Consequently, in the present work, the binding behaviors of Ca2+, Ba2+, Ag+, Ru3+, Cu2+ and Co2+ with bovine serum albumin (BSA) were screened. BSA and the metal ions were allowed to interact at physiological pH and their binding interactions were screened by using FT-IR spectroscopy. Spectra were collected by using hydrated films over a range of 4000–400 cm−1. The interaction was demonstrated by a significant reduction in the spectral intensities of the amide I (C=O stretching) and amide II bands (C–N stretching coupled to NH bending) of the protein after complexation with metal ions. The binding interaction was further revealed by spectral shifting of the amide I band from 1651 cm−1 (free BSA) to 1653, 1654, 1649, 1655, 1655, and 1654 cm−1 for BSA–Ca2+, BSA–Ba2+, BSA–Ag+, BSA–Ru3+, BSA–Cu2+ and BSA–Co2+ complexes, respectively. The shifting of the amide I band was due to the interactions of metal ions with the O and N atoms of the ligand protein. Estimation of the secondary protein structure showed alteration in the protein conformation, characterized by a marked decrease (12.9–40.3%) in the α-helix accompanied by increased β-sheet and β-turn after interaction with the metal ions. The interaction results of this study were comparable with those reported in our previous investigation of metal ion–BSA interactions using affinity capillary electrophoresis (ACE), which has proven the accuracy of the FT-IR technique in the measurement of interactions between proteins and metal ions.


2017 ◽  
Vol 41 (19) ◽  
pp. 10712-10722 ◽  
Author(s):  
Lakkoji Satish ◽  
Sabera Millan ◽  
Krishnendu Bera ◽  
Sujata Mohapatra ◽  
Harekrushna Sahoo

Experimental and theoretical evidence in support of the stabilizing effect of ammonium-based ionic liquids on thermal unfolding/refolding of bovine serum albumin is provided in this article.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3056 ◽  
Author(s):  
Guiying Huang ◽  
Jun Liu ◽  
Weiping Jin ◽  
Zihao Wei ◽  
Chi-Tang Ho ◽  
...  

As a functional polysaccharide, inulin was carboxymethylated and it formed nanocomplexes with bovine serum albumin (BSA). The success of obtaining carboxymethyl inulin (CMI) was confirmed by a combination of Fourier transform Infrared (FT-IR), Raman spectroscopy, gel permeation chromatography (GPC), and titration. The effects of pH and ionic strength on the formation of CMI/BSA nanocomplexes were investigated. Our results showed that the formation of complex coacervate (pHφ1) and dissolution of CMI/BSA insoluble complexes (pHφ2) appeared in pH near 4.85 and 2.00 respectively. FT-IR and Raman data confirmed the existence of electrostatic interaction and hydrogen bonding between CMI and BSA. The isothermal titration calorimetry (ITC) results suggested that the process of complex formation was spontaneous and exothermic. The complexation was dominated by enthalpy changes (∆Η < 0, ∆S < 0) at pH 4.00, while it was contributed by enthalpic and entropic changes (∆Η < 0, ∆S > 0) at pH 2.60. Irregularly shaped insoluble complexes and globular soluble nanocomplexes (about 150 nm) were observed in CMI/BSA complexes at pH 4.00 and 2.60 while using optical microscopy and atomic force microscopy, respectively. The sodium chloride suppression effect on CMI/BSA complexes was confirmed by the decrease of incipient pH for soluble complex formation (or pHc) and pHφ1 under different sodium chloride concentrations. This research presents a new functional system with the potential for delivering bioactive food ingredients.


2010 ◽  
Vol 05 (04) ◽  
pp. 209-226 ◽  
Author(s):  
SAQER M. DARWISH

The interaction of propofol and human serum albumin (HSA) has been investigated by UV-absorption, fluorescence spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. Propofol has shown a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The binding constant (k) is estimated at a low value of 2.55 × 103M-1at 293 K. FT-IR spectroscopy with Fourier self-deconvolution technique was used to determine the protein secondary structure in the amide regions I, II and III. The observed spectral changes of HSA-propofol complex indicate a larger intensity decrease in the absorption band of α-helix relative to that of β-sheets. This variation in intensity is related indirectly to the formation of H-bonding in the complex molecules, which accounts for the different intrinsic propensities of α-helix and β-sheets.


2004 ◽  
Vol 82 (10) ◽  
pp. 1545-1553 ◽  
Author(s):  
L Tay ◽  
N L Rowell ◽  
D Poitras ◽  
J W Fraser ◽  
D J Lockwood ◽  
...  

Hydrogen-terminated porous silicon (pSi-H) films were fabricated through electrochemical anodization of crystalline silicon in hydrofluoric-acid-based solutions. The pSi-H surface was chemically functionalized by thermal reaction with undecylenic acid to produce an organic monolayer covalently attached to the silicon surface through Si—C bonds and bearing an acid terminal group. Bovine serum albumin (BSA) was adsorbed onto such surface-modified pSi structures. The resulting surfaces were characterized using scanning electron microscopy (SEM), reflection FT-IR spectroscopy, and ellipsometry. SEM showed that the porous films were damaged and partially lifted off the silicon substrate after a prolonged BSA adsorption. Ellipsometry analysis revealed that the BSA penetrated ∼1.3 µm into the porous structure. The film damage is likely a result of BSA anchoring itself tightly through strong electrostatic interaction with the acid-covered Si sidewalls. A change in surface tension during BSA film formation then causes the pSi layer to buckle and lift off the underlying Si substrate. FT-IR results from the undecylenic-acid-modified pSi surfaces before and after BSA adsorption showed the presence of strong characteristic amide I, II, and III vibrational bands after BSA adsorption. The surface properties of the pSi matrix and its interactions with BSA are examined in this study.Key words: ellipsometry, porous silicon, protein adsorption, surface passivation.


2012 ◽  
Vol 27 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Shu-Chao Liu ◽  
Jing Tang ◽  
Xi-Hai Zhang ◽  
Yuan-Yuan Gao ◽  
Fei Ma ◽  
...  

The interaction between bovine serum albumin (BSA) and Prodigiosin (PG) was investigated by UV-vis absorption, fluorescence, synchronous fluorescence, FT-IR and circular dichroism (CD) techniques. The data of UV-vis absorption and fluorescence spectra displayed that there existed interaction between PG and aromatic amino acid residues of BSA. The synchronous fluorescence and CD spectrum experiment both showed that the secondary structure of BSA changed with addition of PG. All these results revealed that the conformation and microenvironment of BSA were changed.


1999 ◽  
Vol 15 (12) ◽  
pp. 1064-1069 ◽  
Author(s):  
Shen Yu-Hua ◽  
◽  
Yang Zhan-Lan ◽  
Wu Jin-Guang

2015 ◽  
Vol 12 (107) ◽  
pp. 20150186 ◽  
Author(s):  
Alessio Adamiano ◽  
Isidoro Giorgio Lesci ◽  
Daniele Fabbri ◽  
Norberto Roveri

Synthetic stoichiometric and Fe-doped geomimetic chrysotile nanocrystals represent a reference standard to investigate the health hazard associated with mineral asbestos fibres. Experimental evidence suggests that the generation of reactive oxygen species and other radicals, catalysed by iron ions at the fibre surface, plays an important role in asbestos-induced cytotoxicity and genotoxicity. In this study, structural modification of bovine serum albumin (BSA) adsorbed onto synthetic chrysotile doped with different amounts of Fe has been investigated by Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and analytical pyrolysis coupled with gas chromatography–mass spectrometry. FT-IR data evidenced a marked increase in disordered structures like random coil and β-turn of BSA–nanocrystal adduct with 0.52 wt% of Fe doped. The TGA profile of the BSA revealed that its interaction with the synthetic chrysotile surface was strongly affected by the substitution of Fe into the chrysotile structure. The 2,5-diketopiperazine yields, formed upon thermal degradation of the polypeptide chain (pyrolysis–gas chromatography), changed when the BSA was adsorbed on the nanofibres. In general, results suggested that minute amount (less than 1 wt%) of Fe doping in chrysotile affected the protein–nanofibre interactions, supporting the role that this element may play in asbestos toxicity. The catalytic role of iron and the consequent unfolding of protein due to the structural surface modification of nanofibres were also evaluated.


Sign in / Sign up

Export Citation Format

Share Document