scholarly journals 2P100 Structure and function of feast/famine regulatory proteins : 2. Interacton of DM1 with ligands studied using a crystal structure

2004 ◽  
Vol 44 (supplement) ◽  
pp. S134
Author(s):  
H. Koike ◽  
S. A. Ishijima ◽  
M. Sakuma ◽  
K. Minahiro ◽  
M. Suzuki
2002 ◽  
Vol 30 (6) ◽  
pp. 1006-1010 ◽  
Author(s):  
M. K. Pangburn ◽  
N. Rawal

The multisubunit enzymes of the complement system that cleave C5 have many unusual properties, the most striking of which is that they acquire their specificity for C5 following cleavage of another substrate C3. C5 convertases are assemblies of two proteins C4b and C2a (classical or lectin pathways) or C3b and Bb (alternative pathway) and additional C3b molecules. The catalytic complexes (C4b, C2a or C3b, Bb) are intrinsically unstable (t1,2 = 1–3 min) and the enzymes are controlled by numerous regulatory proteins that accelerate this natural decay rate. Immediately after assembly, the bi-molecular enzymes preferentially cleave the protein C3 and exhibit poor activity toward C5 (a Km of approx. 25 μM and a C5 cleavage rate of 0.3-1 C5/min at Vmax). Efficient C3 activation results in the covalent attachment of C3b to the cell surface and to the enzyme itself, resulting in formation of C3b-C3b and C4b-C3b complexes. Our studies have shown that deposition of C3b alters the specificity of the enzymes of both pathways by changing the Km for C5 more than 1000-fold from far above the physiological C5 concentration to far below it. Thus, after processing sufficient C3 at the surface of a microorganism, the enzymes switch to processing C5, which initiates the formation of the cytolytic membrane attack complex of complement.


2004 ◽  
Vol 44 (supplement) ◽  
pp. S135
Author(s):  
K. Yokoyama ◽  
H. Koike ◽  
S.A. Ishijima ◽  
L. Clowney ◽  
T. Kikuchi ◽  
...  

Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 26-30
Author(s):  
Z. Sh. Kutlubaeva ◽  
Е. V. Chetverina ◽  
A. B. Chetverin

The high resolution crystal structure of bacterial ribosome was determined more than 10 years ago; however, it contains no information on the structure of the largest ribosomal protein, S1. This unusual protein comprises six flexibly linked domains; therefore, it lacks a fixed structure and this prevents the formation of crystals. Besides being a component of the ribosome, protein S1 also serves as one of the four subunits of Q replicase, the RNA-directed RNA polymerase of bacteriophage Q. In each case, the role of this RNA-binding protein has been thought to consist in holding the template close to the active site of the enzyme. In recent years, a breakthrough was made in studies of protein S1 within Q replicase. This includes the discovery of its paradoxical ability to displace RNA from the replicase complex and determining the crystal structure of its fragment capable of performing this function. The new findings call for a re-examination of the contribution of protein S1 to the structure and function of the ribosome.


2020 ◽  
Author(s):  
Lauren K. Clark ◽  
Todd J. Green ◽  
Chad M. Petit

The periodic emergence of novel coronaviruses (CoVs) represents an ongoing public health concern with significant health and financial burden worldwide. The most recent occurrence originated in the city of Wuhan, China where a novel coronavirus (SARS-CoV-2) emerged causing severe respiratory illness and pneumonia. The continual emergence of novel coronaviruses underscores the importance of developing effective vaccines as well as novel therapeutic options that target either viral functions or host factors recruited to support coronavirus replication. The CoV nonstructural protein 1 (nsp1) has been shown to promote cellular mRNA degradation, block host cell translation, and inhibit the innate immune response to virus infection. Interestingly, deletion of the nsp1-coding region in infectious clones prevented the virus from productively infecting cultured cells. Because of nsp1’s importance in the CoV life cycle, it has been highlighted as a viable target for both antiviral therapy and vaccine development. However, the fundamental molecular and structural mechanisms that underlie nsp1 function remain poorly understood, despite its critical role in the viral life cycle. Here we report the high-resolution crystal structure of the amino, globular portion of SARS-CoV-2 nsp1 (residues 10 – 127) at 1.77 Å resolution. A comparison of our structure with the SARS-CoV-1 nsp1 structure reveals how mutations alter the conformation of flexible loops, inducing the formation of novel secondary structural elements and new surface features. Paired with the recently published structure of the carboxyl end of nsp1 (residues 148 – 180), our results provide the groundwork for future studies focusing on SARS-CoV-2 nsp1 structure and function during the viral life cycle. IMPORTANCE The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic. One protein known to play a critical role in the coronavirus life cycle is nonstructural protein1 (nsp1). As such, it has been highlighted in numerous studies as a target for both the development of antivirals and for the design of live-attenuated vaccines. Here we report the high-resolution crystal structure of nsp1 derived from SARS-CoV-2 at 1.77 Å resolution. This structure will facilitate future studies focusing on understanding the relationship between structure and function for nsp1. In turn, understanding these structure-function relationships will allow nsp1 to be fully exploited as a target for both antiviral development and vaccine design.


2020 ◽  
Vol 31 (4) ◽  
pp. 287-303 ◽  
Author(s):  
Daniel Appadurai ◽  
Lincoln Gay ◽  
Akshay Moharir ◽  
Michael J. Lang ◽  
Mara C. Duncan ◽  
...  

Eisosomes are furrows of the yeast plasma membrane that are involved in the regulation of nutrient transporters and membrane stress pathways. Environmental changes affect plasma membrane tension and fluidity, which change both the eisosome structure and the localization of nutrient transporters and regulatory proteins to the eisosome.


Sign in / Sign up

Export Citation Format

Share Document