scholarly journals S1e2-8 Micropatterned composite membranes of polymerized and fluid lipid bilayers as a versatile model cellular membrane(S1-e2: "New Biomembrane Model Systems, Giant Liposomes and Supported Planar Bilayers, for Probing Biomembrane Structure and Function, and Creation of De Novo Functional Membrane System",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)

2006 ◽  
Vol 46 (supplement2) ◽  
pp. S118
Author(s):  
Kenichi Morigaki
2016 ◽  
Vol 311 (4) ◽  
pp. G713-G723 ◽  
Author(s):  
Beng San Yeoh ◽  
Piu Saha ◽  
Vishal Singh ◽  
Xia Xiao ◽  
Yun Ying ◽  
...  

Stearoyl-CoA desaturase-1 (SCD1) is a lipogenic enzyme involved in the de novo biosynthesis of oleate (C18:1, n9), a major fatty acid in the phospholipids of lipid bilayers of cell membranes. Accordingly, Scd1KO mice display substantially reduced oleate in cell membranes. An altered SCD1 level was observed during intestinal inflammation; however, its role in modulating inflammatory bowel disease remains elusive. Herein, we investigated the colitogenic capacity of Scd1KO effector T cells by employing the adoptive T-cell transfer colitis model. Splenic effector T cells (CD4+CD25−) from age- and sex-matched wild-type (WT) and Scd1KO mice were isolated by FACS and intraperitoneally administered to Rag1KO mice, which were monitored for the development of colitis. At day 60 postcell transfer, Rag1KO mice that received Scd1KO CD4+CD25− T cells displayed accelerated and exacerbated colitis than mice receiving WT CD4+CD25− T cells. Intriguingly, Scd1KO CD4+CD25− T cells display augmented inflammatory cytokine profile and cellular membrane fluidity with a concomitant increase in proinflammatory saturated fatty acids, which we postulate to potentially underlie their augmented colitogenic potential.


2022 ◽  
Vol 14 ◽  
Author(s):  
Bipan K. Deb ◽  
Helen S. Bateup

Neurodevelopmental disorders (NDDs) are a collection of diseases with early life onset that often present with developmental delay, cognitive deficits, and behavioral conditions. In some cases, severe outcomes such as brain malformations and intractable epilepsy can occur. The mutations underlying NDDs may be inherited or de novo, can be gain- or loss-of-function, and can affect one or more genes. Recent evidence indicates that brain somatic mutations contribute to several NDDs, in particular malformations of cortical development. While advances in sequencing technologies have enabled the detection of these somatic mutations, the mechanisms by which they alter brain development and function are not well understood due to limited model systems that recapitulate these events. Human brain organoids have emerged as powerful models to study the early developmental events of the human brain. Brain organoids capture the developmental progression of the human brain and contain human-enriched progenitor cell types. Advances in human stem cell and genome engineering provide an opportunity to model NDD-associated somatic mutations in brain organoids. These organoids can be tracked throughout development to understand the impact of somatic mutations on early human brain development and function. In this review, we discuss recent evidence that somatic mutations occur in the developing human brain, that they can lead to NDDs, and discuss how they could be modeled using human brain organoids.


Sign in / Sign up

Export Citation Format

Share Document