scholarly journals 3P100 X-ray crystal structures of cytochrome P450 StaP which produces skeleton of an anticancer drug suggest unusual catalytic mechanism of P450(Hemeproteins,Poster Presentations)

2007 ◽  
Vol 47 (supplement) ◽  
pp. S228
Author(s):  
Masatomo Makino ◽  
Shingo Nagao ◽  
Hiroshi Sugimoto ◽  
Shumpei Asamizu ◽  
Hiroyasu Onaka ◽  
...  
2014 ◽  
Vol 70 (a1) ◽  
pp. C437-C437
Author(s):  
Aruna Bitra ◽  
Ruchi Anand

Guanine deaminases (GDs) are important enzymes involved in both purine metabolism and nucleotide anabolism pathways. Here we present the molecular and catalytic mechanism of NE0047 and use the information obtained to engineer specific enzyme activities. NE0047 from Nitrosomonas europaea was found to be a high fidelity guanine deaminase (catalytic efficiency of 1.2 × 105 M–1 s–1). However; it exhibited secondary activity towards the structurally non-analogous triazine based compound ammeline. The X-ray structure of NE0047 in the presence of the substrate analogue 8-azaguanine help establish that the enzyme exists as a biological dimer and both the proper closure of the C-terminal loop and cross talk via the dimeric interface is crucial for conferring catalytic activity. It was further ascertained that the highly conserved active site residues Glu79 and Glu143 facilitate the deamination reaction by serving as proton shuttles. Moreover, to understand the structural basis of dual substrate specificity, X-ray structures of NE0047 in complex with a series of nucleobase analogs, nucleosides and substrate ammeline were determined. The crystal structures demonstrated that any substitutions in the parent substrates results in the rearrangement of the ligand in a catalytically unfavorable orientation and also impede the closure of catalytically important loop, thereby abrogating activity. However, ammeline was able to adopt a catalytically favorable orientation which, also allowed for proper loop closure. Based on the above knowledge of the crystal structures and the catalytic mechanism, the active site was subsequently engineered to fine-tune NE0047 activity. The mutated versions of the enzyme were designed so that they can function either exclusively as a GD or serve as specific ammeline deaminases. For example, mutations in the active site E143D and N66A confer the enzyme to be an unambiguous GD with no secondary activity towards ammeline. On the other hand, the N66Q mutant of NE0047 only deaminates ammeline. Additionally, a series of crystal structures of the mutant versions were solved that shed light on the structural basis of this differential selectivity.


2007 ◽  
Vol 104 (28) ◽  
pp. 11591-11596 ◽  
Author(s):  
M. Makino ◽  
H. Sugimoto ◽  
Y. Shiro ◽  
S. Asamizu ◽  
H. Onaka ◽  
...  

Author(s):  
A. Zangvil ◽  
L.J. Gauckler ◽  
G. Schneider ◽  
M. Rühle

The use of high temperature special ceramics which are usually complex materials based on oxides, nitrides, carbides and borides of silicon and aluminum, is critically dependent on their thermomechanical and other physical properties. The investigations of the phase diagrams, crystal structures and microstructural features are essential for better understanding of the macro-properties. Phase diagrams and crystal structures have been studied mainly by X-ray diffraction (XRD). Transmission electron microscopy (TEM) has contributed to this field to a very limited extent; it has been used more extensively in the study of microstructure, phase transformations and lattice defects. Often only TEM can give solutions to numerous problems in the above fields, since the various phases exist in extremely fine grains and subgrain structures; single crystals of appreciable size are often not available. Examples with some of our experimental results from two multicomponent systems are presented here. The standard ion thinning technique was used for the preparation of thin foil samples, which were then investigated with JEOL 200A and Siemens ELMISKOP 102 (for the lattice resolution work) electron microscopes.


1999 ◽  
Vol 82 (08) ◽  
pp. 271-276 ◽  
Author(s):  
Glen Spraggon ◽  
Stephen Everse ◽  
Russell Doolittle

IntroductionAfter a long period of anticipation,1 the last two years have witnessed the first high-resolution x-ray structures of fragments from fibrinogen and fibrin.2-7 The results confirmed many aspects of fibrinogen structure and function that had previously been inferred from electron microscopy and biochemistry and revealed some unexpected features. Several matters have remained stubbornly unsettled, however, and much more work remains to be done. Here, we review several of the most significant findings that have accompanied the new x-ray structures and discuss some of the problems of the fibrinogen-fibrin conversion that remain unresolved. * Abbreviations: GPR—Gly-Pro-Arg-derivatives; GPRPam—Gly-Pro-Arg-Pro-amide; GHRPam—Gly-His-Arg-Pro-amide


2019 ◽  
Author(s):  
Yunyang Zhang ◽  
Janice Mui ◽  
Thimali Arumaperuma ◽  
James P. Lingford ◽  
ETHAN GODDARD-BORGER ◽  
...  

<p>The sulfolipid sulfoquinovosyl diacylglycerol (SQDG) and its headgroup, the sulfosugar sulfoquinovose (SQ), are estimated to harbour up to half of all organosulfur in the biosphere. SQ is liberated from SQDG and related glycosides by the action of sulfoquinovosidases (SQases). We report a 10-step synthesis of SQDG that we apply to the preparation of saturated and unsaturated lipoforms. We also report an expeditious synthesis of SQ and (<sup>13</sup>C<sub>6</sub>)SQ, and X-ray crystal structures of sodium and potassium salts of SQ. Finally, we report the synthesis of a fluorogenic SQase substrate, methylumbelliferyl a-D-sulfoquinovoside, and examination of its cleavage kinetics by two recombinant SQases.</p>


2019 ◽  
Author(s):  
Nobutaka Fujieda ◽  
Sachiko Yanagisawa ◽  
Minoru Kubo ◽  
Genji Kurisu ◽  
Shinobu Itoh

To unveil the activation of dioxygen on the copper centre (Cu<sub>2</sub>O<sub>2</sub>core) of tyrosinase, we performed X-ray crystallograpy with active-form tyrosinase at near atomic resolution. This study provided a novel insight into the catalytic mechanism of the tyrosinase, including the rearrangement of copper-oxygen species as well as the intramolecular migration of copper ion induced by substrate-binding.<br>


Sign in / Sign up

Export Citation Format

Share Document