lattice resolution
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 1)

Nature ◽  
2021 ◽  
Vol 599 (7886) ◽  
pp. 571-575
Author(s):  
Luca Asteria ◽  
Henrik P. Zahn ◽  
Marcel N. Kosch ◽  
Klaus Sengstock ◽  
Christof Weitenberg

AbstractImaging is central to gaining microscopic insight into physical systems, and new microscopy methods have always led to the discovery of new phenomena and a deeper understanding of them. Ultracold atoms in optical lattices provide a quantum simulation platform, featuring a variety of advanced detection tools including direct optical imaging while pinning the atoms in the lattice1,2. However, this approach suffers from the diffraction limit, high optical density and small depth of focus, limiting it to two-dimensional (2D) systems. Here we introduce an imaging approach where matter wave optics magnifies the density distribution before optical imaging, allowing 2D sub-lattice-spacing resolution in three-dimensional (3D) systems. By combining the site-resolved imaging with magnetic resonance techniques for local addressing of individual lattice sites, we demonstrate full accessibility to 2D local information and manipulation in 3D systems. We employ the high-resolution images for precision thermodynamics of Bose–Einstein condensates in optical lattices as well as studies of thermalization dynamics driven by thermal hopping. The sub-lattice resolution is demonstrated via quench dynamics within the lattice sites. The method opens the path for spatially resolved studies of new quantum many-body regimes, including exotic lattice geometries or sub-wavelength lattices3–6, and paves the way for single-atom-resolved imaging of atomic species, where efficient laser cooling or deep optical traps are not available, but which substantially enrich the toolbox of quantum simulation of many-body systems.


2021 ◽  
Vol 37 ◽  
pp. 345-353
Author(s):  
Ran Cai ◽  
Shiying Guo ◽  
Yi Wu ◽  
Shengli Zhang ◽  
Yuanwei Sun ◽  
...  

Author(s):  
Takayuki Suzuki ◽  
Hiroyuki Yoshida ◽  
Naoki Horiguchi ◽  
Sota Yamamura ◽  
Yutaka Abe

Abstract In the severe accident (SA) of nuclear reactors, fuel and components melt, and melted materials fall to a lower part of a reactor vessel. In the lower part of a reactor vessel, in some sections of the SAs, it is considered that there is a water pool. Then, the melted core materials fall into a water pool in the lower plenum as a jet. The molten material jet is broken up, and heat transfer between molten material and coolant may occur. This process is called a fuel-coolant interaction (FCI). FCI is one of the important phenomena to consider the coolability and distribution of core materials. In this study, the numerical simulation of jet breakup phenomena with a shallow pool was performed by using the developed method (TPFIT). We try to understand the hydrodynamic interaction under various, such as penetration, reach to the bottom, spread, accumulation of the molten material jet. Also, we evaluated a detailed jet spread behavior and examined the influence of lattice resolution and the contact angle. Furthermore, the diameters of atomized droplets were evaluated by using numerical simulation data.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040085
Author(s):  
Ying Tong ◽  
Jian Xia

The hydrodynamic force (HF) evaluation plays a critical role in the numerical simulation of fluid–structure interaction (FSI). By directly using the distribution functions of lattice Boltzmann equation (LBE) to evaluate the HF, the momentum exchange algorithm (MEA) has excellent features. Particularly, it is independent of boundary geometry and avoids integration on the complex boundary. In this work, the HF of lattice Boltzmann simulation (LBS) is evaluated by using the MEA. We conduct a comparative study to evaluate two lattice Boltzmann models for constructing the flow solvers, including the LBE with single-relaxation-time (SRT) and multiple-relaxation-time (MRT) collision operators. The second-order boundary condition schemes are used to address the curve boundary. The test case of flow past a cylinder asymmetrically placed in a channel is simulated. Comparing the numerical solutions of Lattice Boltzmann method (LBM) with those of Navier–Stokes equations in the literature, the influence of collision relaxation model, boundary conditions and lattice resolution is investigated. The results demonstrate that the MRT-LB improves the numerical stability of the LBM and the accuracy of HF.


2020 ◽  
Author(s):  
Elias Nakouzi ◽  
Andrew G Stack ◽  
S.N. Kerisit ◽  
Benjamin A Legg ◽  
Christopher J. Mundy ◽  
...  

<p>Although interfacial solution structure impacts environmental, biological and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D) hydration structure at the boehmite(010)-water interface using fast force mapping (FFM). Using a self-consistent scheme to decouple long-range tip-sample interactions from short-range solvation forces, we obtain the solution structure with lattice resolution. The results are benchmarked against molecular dynamics simulations that explicitly include the effects of the tip with different levels of approximation and systematically account for tip size, chemistry, and confinement effects. We find four laterally structured water layers within one nanometer of the surface, with the highest water densities at sites adjacent to hydroxyl groups. The findings reveal a complex relationship between site-specific chemistry, water density, and long-range particle interactions; and represent a major step forward towards quantitative data interpretation and widespread implementation of 3D FFM.</p>


2020 ◽  
Author(s):  
Elias Nakouzi ◽  
Andrew G Stack ◽  
S.N. Kerisit ◽  
Benjamin A Legg ◽  
Christopher J. Mundy ◽  
...  

<p>Although interfacial solution structure impacts environmental, biological and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D) hydration structure at the boehmite(010)-water interface using fast force mapping (FFM). Using a self-consistent scheme to decouple long-range tip-sample interactions from short-range solvation forces, we obtain the solution structure with lattice resolution. The results are benchmarked against molecular dynamics simulations that explicitly include the effects of the tip with different levels of approximation and systematically account for tip size, chemistry, and confinement effects. We find four laterally structured water layers within one nanometer of the surface, with the highest water densities at sites adjacent to hydroxyl groups. The findings reveal a complex relationship between site-specific chemistry, water density, and long-range particle interactions; and represent a major step forward towards quantitative data interpretation and widespread implementation of 3D FFM.</p>


2019 ◽  
Vol 25 (S2) ◽  
pp. 1656-1657 ◽  
Author(s):  
Matthew Mecklenburg ◽  
William A. Hubbard ◽  
Jared J. Lodico ◽  
B. C. Regan

Author(s):  
Giovanni Giupponi ◽  
Ignacio Pagonabarraga

We compute the electrostatic potential at the surface, or zeta potential ζ , of a charged particle embedded in a colloidal suspension using a hybrid mesoscopic model. We show that, for weakly perturbing electric fields, the value of ζ obtained at steady state during electrophoresis is statistically indistinguishable from ζ in thermodynamic equilibrium. We quantify the effect of counter-ion concentration on ζ . We also evaluate the relevance of the lattice resolution for the calculation of ζ and discuss how to identify the effective electrostatic radius.


Sign in / Sign up

Export Citation Format

Share Document