Effect of obesity on saphenous graft stenosis in patients with postoperative recurrent angina.

2007 ◽  
Vol 62 (4) ◽  
pp. 397-402 ◽  
Author(s):  
M.T. Selcuk ◽  
H. Selcuk ◽  
O. Maden ◽  
O. Ozeke ◽  
H. Ulupinar ◽  
...  
Vascular ◽  
2021 ◽  
pp. 170853812199985
Author(s):  
Yuanyuan Guo ◽  
Fan Zhu ◽  
Xiong Zhang ◽  
Guangmin Wu ◽  
Pinting Fu ◽  
...  

Objectives Vein graft adaptation (VGA) is a process that vein as a vascular graft conduits in arterial reconstructive surgery; VGA can lead to postoperative vein graft stenosis (VGS) and complications after coronary artery bypass graft and other peripheral artery bypass surgeries. VGA is characterized by vein graft loss the venous features without exhibiting arterial features; furthermore, the activation of ERK inhibited the maintenance of venous properties of the vein graft. We hypothesized that ERK inhibition can affect vein VGS through regulating the expression of EphB4. Methods Rat vein transplantation model was established using wild-type and EphB4+/− Sprague-Dawley rats. Hematoxylin-eosin, Masson, Verhoeff, actin staining, and immunohistochemistry were applied to observe the structure of the vein grafts. Vascular smooth muscle cells (VSMCs) were isolated from the vein and vein grafts. Western blotting was used to determine the expression of p-ERK1/2 and EphB4, and immunofluorescence was applied to detect the expression and location of EphB4. Cell wound scratch assay and CCK8 assay were used to determine the migration and proliferation of VSMCs. Real-time polymerase chain reaction was used to determine the mRNA expression of EphB4. Results Western blotting in vein sample and vein graft sample detected p-ERK1/2 and ERK1/2 expression in both EphB4+/+ and EphB4+/− rats. The expression of p-ERK was increased in vein graft compared to vein. Immunofluorescence in VSMCs form EphB4+/+ and EphB4+/− rats detected EphB4 expression in both cells, and the expression of EphB4 was increased in VSMCs form EphB4+/+ rats. SCH772984 reduces the proliferation and migration of VSMCs. Inhibition of ERK suppressed the increase of vein graft wall thickness, and the expression of collagen fibers, elastic fibers, and α-actin was decreased. Vein graft from EphB4+/− rats reduces the expression of EphB4, and SCH772984 suppressed the decrease of EphB4 in vivo. Vein graft from EphB4+/− rats increased the expression of EphB4, and SCH772984 suppressed the increase of EphB4 in vivo. Conclusions The inhibition of ERK1/2 suppressed the process of VGS by decreasing the proliferation of VSMCs. The ERK-inhibitor SCH772984 suppressed the level of VGS by extending the time of EphB4 expression during the process of VGA, thus maintaining the venousization of vein graft. The mechanism may be that the inhibitor SCH772984 suppresses the level of VGS by extending the time of EphB4 expression during the process of VGA. Therefore, our research provides a new target of VGS treatment by inhibiting the expression of ERK1/2 through the process of VGA.


Cardiology ◽  
2011 ◽  
Vol 118 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Kyomars Abbasi ◽  
Keivan Shalileh ◽  
Maryam Sotudeh Anvari ◽  
Shahram Rabbani ◽  
Abolfazl Mahdanian ◽  
...  

2018 ◽  
Vol 24 (3) ◽  
pp. 269-277 ◽  
Author(s):  
Hourong Sun ◽  
Chuan-Zhen Liu ◽  
Chunxiao Liu ◽  
Mengmeng Tang ◽  
Guangqing Cao ◽  
...  

Poly (propylene carbonate, PPC) is a new member of the aliphatic polyester family. An outstanding feature of PPC is that it produces mainly water and carbon dioxide when degraded in vivo, causing minimal side effects. This unique property together with excellent biocompatibility and biodegradability makes PPC a promising material for drug delivery. In this study, we explored the effect of the sirolimus (an inhibitor of cell growth)-eluting PPC mesh on graft stenosis and its possible mechanisms in a rat arteriovenous grafting model. The PPC mesh was prepared by electrospinning. A jugular vein to abdominal aortic autograft transplantation model was established in rats. The graft was then treated by wrapping with the drug mesh or the drug-free mesh or left untreated. Four weeks posttransplantation, neointima was measured with hematoxylin and eosin staining, matrix metalloproteinase-2 (MMP-2), and MMP-9, and proliferating cell nuclear antigen (PCNA) in the grafts were assayed by Western blotting and immunohistochemistry, respectively. In vitro rat aortic adventitial fibroblast cell (RAAFC) migration was assessed using the Boyden chamber assay, and phospho-mammalian target of rapamycin (mTOR) levels in RAAFCs were determined by Western blotting. Animals with the drug mesh had an intimal area index of 4.87% ± 0.98%, significantly lower than that of the blank group (14.21% ± 2.56%) or the PPC group (15.03% ± 2.35%, both P < .05). The sirolimus mesh markedly suppressed MMP-2 and MMP-9 expression, decreased PCNA-positive cell numbers, inhibited RAAFC migration, and reduced phospho-mTOR levels. Our data suggest that the sirolimus-eluting PPC mesh might be potentially applied for the management of grafting stenosis.


2002 ◽  
Vol 62 (6) ◽  
pp. 2272-2280 ◽  
Author(s):  
Burnett S. Kelly ◽  
Sue C. Heffelfinger ◽  
James F. Whiting ◽  
Mary Ann Miller ◽  
Anita Reaves ◽  
...  

2009 ◽  
Vol 297 (5) ◽  
pp. C1307-C1317 ◽  
Author(s):  
Haifa A. Madi ◽  
Kirsten Riches ◽  
Philip Warburton ◽  
David J. O'Regan ◽  
Neil A. Turner ◽  
...  

Individuals with Type 2 diabetes mellitus (T2DM) are at increased risk of saphenous vein (SV) graft stenosis following coronary artery bypass. Graft stenosis is caused by intimal hyperplasia, a pathology characterized by smooth muscle cell (SMC) proliferation and migration. We hypothesized that SV-SMC from T2DM patients were intrinsically more proliferative and migratory than those from nondiabetic individuals. SV-SMC were cultured from nondiabetic and T2DM patients. Cell morphology (light microscopy, immunocytochemistry), S100A4 expression (real-time RT-PCR, immunoblotting), proliferation (cell counting), migration (Boyden chamber assay), and cell signaling (immunoblotting with phosphorylation state-specific antibodies) were studied. SV-SMC from T2DM patients were morphologically distinct from nondiabetic patients and exhibited a predominantly rhomboid phenotype, accompanied by disrupted F-actin cytoskeleton, disorganized α-smooth muscle actin network, and increased focal adhesion formation. However, no differences were observed in expression of the calcium-binding protein S100A4, a marker of rhomboid SMC phenotype, between the two cell populations. T2DM cells were less proliferative in response to fetal calf serum than nondiabetic cells, but both populations had similar proliferative responses to insulin plus PDGF. Under high glucose concentration conditions in the presence of insulin, migration of diabetic SV-SMC was greater than nondiabetic cells. Glucose concentration did not affect SV-SMC proliferation. No differences in insulin or PDGF-induced phosphorylation of ERK-1/2 or components of the Akt pathway (Akt-Ser473, Akt-Thr308, and GSK-3β) were apparent between the two populations. In conclusion, SV-SMC from T2DM patients differ from nondiabetic SV-SMC in that they exhibit a rhomboid phenotype and are more migratory, but less proliferative, in response to serum.


ASAIO Journal ◽  
2018 ◽  
Vol 64 (1) ◽  
pp. e3-e7 ◽  
Author(s):  
Dominik Wiedemann ◽  
Thomas Schlöglhofer ◽  
Thomas Haberl ◽  
Julia Riebandt ◽  
Kamen Dimitrov ◽  
...  

Cureus ◽  
2021 ◽  
Author(s):  
Sabah Siddiqui ◽  
Sergey Ayzenberg ◽  
Ahmad Morshed ◽  
Mazin Khalid ◽  
Samantha Ehrlich
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document