An Investigation of Crowd Speech for Room Occupancy Estimation

Author(s):  
Siyuan Chen ◽  
Julien Epps ◽  
Eliathamby Ambikairajah ◽  
Phu Ngoc Le
Keyword(s):  
Author(s):  
Tadayuki Fukuhara ◽  
Akira Yamaguchi ◽  
Kanshiro Kashiki ◽  
Toshinori Suzuki ◽  
Kazunori Takeuchi

2011 ◽  
Vol 2 (1) ◽  
pp. 117-121 ◽  
Author(s):  
Roger D. Applegate ◽  
Robert E. Kissell ◽  
E. Daniel Moss ◽  
Edward L. Warr ◽  
Michael L. Kennedy

Abstract Point count data are used increasingly to provide density estimates of bird species. A favored approach to analyze point count data uses distance sampling theory where model selection and model fit are important considerations. We used uniform and half normal models and assessed model fit using χ2 analysis. We were unsuccessful in fitting models to 635 northern bobwhite Colinus virginianus observations from 85 avian point locations spanning 6 y (P ≤ 0.05). Most observations (74%) occurred in the outermost (>100-m) distance radius. Our results violated the assumptions that all observations at the point are detected. The assumption that birds were assigned to the correct distance interval also was probably violated. We caution managers in implementing avian point counts with distance sampling when estimating northern bobwhite population density. We recommend exploring other approaches such as occupancy-estimation and modeling for estimating detection probabilities.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4136
Author(s):  
Jakub Nikonowicz ◽  
Aamir Mahmood ◽  
Mikael Gidlund

The energy detection process for enabling opportunistic spectrum access in dynamic primary user (PU) scenarios, where PU changes state from active to inactive at random time instances, requires the estimation of several parameters ranging from noise variance and signal-to-noise ratio (SNR) to instantaneous and average PU activity. A prerequisite to parameter estimation is an accurate extraction of the signal and noise samples in a received signal time frame. In this paper, we propose a low-complexity and accurate signal samples detection algorithm as compared to well-known methods, which is also blind to the PU activity distribution. The proposed algorithm is analyzed in a semi-experimental simulation setup for its accuracy and time complexity in recognizing signal and noise samples, and its use in channel occupancy estimation, under varying occupancy and SNR of the PU signal. The results confirm its suitability for acquiring the necessary information on the dynamic behavior of PU, which is otherwise assumed to be known in the literature.


Sign in / Sign up

Export Citation Format

Share Document