RESEARCH OF SURFACTANT SOLUTIONS FILTRATION IN HARD ROCKS

Author(s):  
jO.G. LATYSHEV ◽  
2018 ◽  
Author(s):  
Durga Bastakoti ◽  
Hongna Zhang ◽  
Wei-Hua Cai ◽  
Feng-Chen Li

Equipment ◽  
2006 ◽  
Author(s):  
J. Sestak ◽  
V. Mik ◽  
J. Myska ◽  
M. Dostal ◽  
L. Mihalka

2013 ◽  
Vol 50 (5) ◽  
pp. 332-338 ◽  
Author(s):  
Akiomi Ushida ◽  
Tomiichi Hasegawa ◽  
Keiko Amaki ◽  
Takatsune Narumi

SPE Journal ◽  
2013 ◽  
Vol 18 (05) ◽  
pp. 818-828 ◽  
Author(s):  
M. Hosein Kalaei ◽  
Don W. Green ◽  
G. Paul Willhite

Summary Wettability modification of solid rocks with surfactants is an important process and has the potential to recover oil from reservoirs. When wettability is altered by use of surfactant solutions, capillary pressure, relative permeabilities, and residual oil saturations change wherever the porous rock is contacted by the surfactant. In this study, a mechanistic model is described in which wettability alteration is simulated by a new empirical correlation of the contact angle with surfactant concentration developed from experimental data. This model was tested against results from experimental tests in which oil was displaced from oil-wet cores by imbibition of surfactant solutions. Quantitative agreement between the simulation results of oil displacement and experimental data from the literature was obtained. Simulation of the imbibition of surfactant solution in laboratory-scale cores with the new model demonstrated that wettability alteration is a dynamic process, which plays a significant role in history matching and prediction of oil recovery from oil-wet porous media. In these simulations, the gravity force was the primary cause of the surfactant-solution invasion of the core that changed the rock wettability toward a less oil-wet state.


2014 ◽  
Vol 14 (9) ◽  
pp. 2627-2635 ◽  
Author(s):  
Z. Feng ◽  
B. Li ◽  
Y. P. Yin ◽  
K. He

Abstract. Calcareous mountainous areas are highly prone to geohazards, and rockslides play an important role in cliff retreat. This study presents three examples of failures of limestone cliffs with subhorizontal bedding in the southwestern calcareous area of China. Field observations and numerical modeling of Yudong Escarpment, Zengzi Cliff, and Wangxia Cliff showed that pre-existing vertical joints passing through thick limestone and the alternation of competent and incompetent layers are the most significant features for rockslides. A "hard-on-soft" cliff made of hard rocks superimposed on soft rocks is prone to rock slump, characterized by shearing through the underlying weak strata along a curved surface and backward tilting. When a slope contains weak interlayers rather than a soft basal, a rock collapse could occur from the compression fracture and tensile split of the rock mass near the interfaces. A rockslide might shear through a hard rock mass if no discontinuities are exposed in the cliff slope, and sliding may occur along a moderately inclined rupture plane. The "toe breakout" mechanism mainly depends on the strength characteristics of the rock mass.


1974 ◽  
Vol 10 (4) ◽  
pp. 472-475
Author(s):  
M. G. Moiseenko ◽  
P. V. Ostapenko

Sign in / Sign up

Export Citation Format

Share Document