cliff retreat
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 20)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 9 (12) ◽  
pp. 1418
Author(s):  
Pascal Bernatchez ◽  
Geneviève Boucher-Brossard ◽  
Maude Corriveau ◽  
Charles Caulet ◽  
Robert L. Barnett

This article focuses on the quantification of retreat rates, geomorphological processes, and hydroclimatic and environmental drivers responsible for the erosion of an unconsolidated fine-sediment cliff along the north shore of the Gulf of St. Lawrence (Quebec, Canada). Annual monitoring using field markers over a period of twenty years, coupled with photo interpretation and historical archive analysis, indicates an average annual erosion rate of 2.2 m per year between 1948 and 2017. An acceleration in retreat occurred during the last 70 years, leading to a maximum between 1997 and 2017 (3.4 m per year) and 2000–2020 (3.3 m per year). Daily observations based on six monitoring cameras installed along the cliff between 2008 and 2012 allowed the identification of mechanisms and geomorphological processes responsible for cliff retreat. Data analysis reveals seasonal activity peaks during winter and spring, which account for 75% of total erosional events. On an annual basis, cryogenic processes represent 68% of the erosion events observed and subaerial and hydrogeological processes account for 73%. Small-scale processes, such as gelifraction, solifluction, suffosion, debris collapse, and thermoabrasion, as well as mass movement events, such as slides and mudflows, induced rapid cliff retreat. Lithostratigraphy and cliff height exert an important control on erosion rates and retreat modes, which are described by three main drivers (hydrogeologic, cryogenic, and hydrodynamic processes). Critical conditions promoting high erosion rates include the absence of an ice-foot in winter, the absence of snow cover on the cliff face allowing unrestricted solar radiation, the repetition of winter warm spells, snow melting and sediment thawing, and high rainfall conditions (>30 mm or SPI > 2). The relationships between hydroclimatic forcing and retreat rates are difficult to establish without taking into account the quantification of the geomorphological processes involved. The absence of quantitative data on the relative contribution of geomorphological processes can constitute a major obstacle in modeling the retreat of cliffs with regard to climate change.


2021 ◽  
Vol 9 (6) ◽  
pp. 1505-1529
Author(s):  
Jennifer R. Shadrick ◽  
Martin D. Hurst ◽  
Matthew D. Piggott ◽  
Bethany G. Hebditch ◽  
Alexander J. Seal ◽  
...  

Abstract. This paper presents a methodology that uses site-specific topographic and cosmogenic 10Be data to perform multi-objective model optimisation of a coupled coastal evolution and cosmogenic radionuclide production model. Optimal parameter estimation of the coupled model minimises discrepancies between model simulations and measured data to reveal the most likely history of rock coast development. This new capability allows a time series of cliff retreat rates to be quantified for rock coast sites over millennial timescales. Without such methods, long-term cliff retreat cannot be understood well, as historical records only cover the past ∼150 years. This is the first study that has (1) applied a process-based coastal evolution model to quantify long-term cliff retreat rates for real rock coast sites and (2) coupled cosmogenic radionuclide analysis with a process-based model. The Dakota optimisation software toolkit is used as an interface between the coupled coastal evolution and cosmogenic radionuclide production model and optimisation libraries. This framework enables future applications of datasets associated with a range of rock coast settings to be explored. Process-based coastal evolution models simplify erosional processes and, as a result, often have equifinality properties, for example that similar topography develops via different evolutionary trajectories. Our results show that coupling modelled topography with modelled 10Be concentrations can reduce equifinality in model outputs. Furthermore, our results reveal that multi-objective optimisation is essential in limiting model equifinality caused by parameter correlation to constrain best-fit model results for real-world sites. Results from two UK sites indicate that the rates of cliff retreat over millennial timescales are primarily driven by the rates of relative sea level rise. These findings provide strong motivation for further studies that investigate the effect of past and future relative sea level rise on cliff retreat at other rock coast sites globally.


2021 ◽  
Vol 9 (5) ◽  
pp. 1111-1123
Author(s):  
Rose V. Palermo ◽  
Anastasia Piliouras ◽  
Travis E. Swanson ◽  
Andrew D. Ashton ◽  
David Mohrig

Abstract. Coastal cliff erosion is alongshore-variable and episodic, with retreat rates that depend upon sediment as either tools of abrasion or protective cover. However, the feedbacks between coastal cliff planform morphology, retreat rate, and sediment cover are poorly quantified. This study investigates Sargent Beach, Texas, USA, at the annual to interannual scale to explore (1) the relationship between temporal and spatial variability in cliff retreat rate, roughness, and sinuosity and (2) the response of retreat rate and roughness to changes in sand and shell hash cover of the underlying mud substrate as well as the impact of major storms using field measurements of sediment cover, erosion, and aerial images to measure shore platform morphology and retreat. A storm event in 2009 increased the planform roughness and sinuosity of the coastal cliff at Sargent Beach. Following the storm, aerial-image-derived shorelines with annual resolution show a decrease in average alongshore erosion rates from 12 to 4 m yr−1, coincident with a decrease in shoreline roughness and sinuosity (smoothing). Like the previous storm, a storm event in 2017 increased the planform roughness and sinuosity of the cliff. Over shorter timescales, monthly retreat of the sea cliff occurred only when the platform was sparsely covered with sediment cover on the shore platform, indicating that the tools and cover effects can significantly affect short-term erosion rates. The timescale to return to a smooth shoreline following a storm or roughening event, given a steady-state erosion rate, is approximately 24 years, with the long-term rate suggesting a maximum of ∼107 years until Sargent Beach breaches, compromising the Gulf Intracoastal Waterway (GIWW) under current conditions and assuming no future storms or intervention. The observed retreat rate varies, both spatially and temporally, with cliff face morphology, demonstrating the importance of multi-scale measurements and analysis for interpretation of coastal processes and patterns of cliff retreat.


2021 ◽  
Vol 9 (8) ◽  
pp. 870
Author(s):  
Tanita Averes ◽  
Jacobus L. A. Hofstede ◽  
Arfst Hinrichsen ◽  
Hans-Christian Reimers ◽  
Christian Winter

Mobile coastal sediments, such as sand and gravel, build up and protect wave-dominated coastlines. In sediment-starved coastal environments, knowledge about the natural sources and transport pathways of those sediments is of utmost importance for the understanding and management of coastlines. Along the Baltic Sea coast of Schleswig-Holstein (Germany), the retreat of active cliffs—made of cohesive Pleistocene deposits—supplies a wide size range of sediments to the coastal system. The material is reworked and sorted by hydrodynamic forcing: the less mobile stones and boulders remain close to the source area; the finest sediments, mostly clay and silt, are transported offshore into areas of low energy; and the fractions of sand and fine gravels mostly remain in the nearshore zone, where they make up the littoral sediment budget. They contribute to the morphodynamic development of sandy coastlines and nearshore bar systems. Exemplarily for this coastal stretch and based on an extensive review of local studies we quantify the volume of the potential littoral sediment budget from cliff retreat. At an average retreat rate of 0.24 m yr−1 (<0.1–0.73 m yr−1), the assessment indicates a weighted average sediment volume of 1.5 m3 yr−1 m−1 (<0.1–9.5 m3 yr−1 m−1) per meter active cliff. For the whole area, this results in an absolute sediment budget Vs,total of 39,000–161,000 m3 yr−1. The accuracy of the results is limited by system understanding and data quality and coverage. The study discusses uncertainties in the calculation of littoral sediment budgets from cliff retreat and provides the first area-wide budget assessment along the sediment-starved Baltic Sea coastline of Schleswig-Holstein.


2021 ◽  
Author(s):  
Jennifer R. Shadrick ◽  
Martin D. Hurst ◽  
Matthew D. Piggott ◽  
Bethany G. Hebditch ◽  
Alexander J. Seal ◽  
...  

Abstract. This paper presents a methodology that uses site-specific topographic and cosmogenic 10Be data to perform multi-objective model optimisation of a coupled coastal evolution and cosmogenic radionuclide production model. Optimal parameter estimation of the coupled model minimises discrepancies between model simulations and measured data to reveal the most likely history of rock coast development. This new capability allows for a time-series of cliff retreat rates to be quantified for rock coast sites over millennial timescales. This is the first study that has 1) applied a process-based coastal evolution model to quantify long-term cliff retreat rates for real, rock coast sites, and 2) coupled cosmogenic radionuclide analysis with a process-based model. The Dakota optimisation software toolkit is used as an interface between the coupled coastal evolution and cosmogenic radionuclide production model and optimisation libraries. This framework enables future applications of datasets associated with a range of rock coast settings to be explored. Process-based coastal evolution models simplify erosional processes and, as a result, often have equifinality properties, for example, that similar topography develops via different evolutionary trajectories. Our results show that coupling modelled topography with modelled 10Be concentrations can reduce equifinality in model outputs. Furthermore, our results reveal that multi-objective optimisation is essential in limiting model equifinality caused by parameter correlation to constrain best-fit model results for real-world sites. Results from two UK sites indicate that the rates of cliff retreat over millennial timescales are primarily driven by the rates of relative sea level rise. These findings provide strong motivation for further studies that investigate the effect of past and future relative sea level rise on cliff retreat at other rock coast sites globally.


Science ◽  
2021 ◽  
Vol 372 (6548) ◽  
pp. 1342-1344
Author(s):  
J. N. Bassis ◽  
B. Berg ◽  
A. J. Crawford ◽  
D. I. Benn

Portions of ice sheets grounded deep beneath sea level can disintegrate if tall ice cliffs at the ice-ocean boundary start to collapse under their own weight. This process, called marine ice cliff instability, could lead to catastrophic retreat of sections of West Antarctica on decadal-to-century time scales. Here we use a model that resolves flow and failure of ice to show that dynamic thinning can slow or stabilize cliff retreat, but when ice thickness increases rapidly upstream from the ice cliff, there is a transition to catastrophic collapse. However, even if vulnerable locations like Thwaites Glacier start to collapse, small resistive forces from sea-ice and calved debris can slow down or arrest retreat, reducing the potential for sustained ice sheet collapse.


2021 ◽  
Author(s):  
Rose V. Palermo ◽  
Anastasia Piliouras ◽  
Travis E. Swanson ◽  
Andrew D. Ashton ◽  
David Mohrig

Abstract. Coastal cliff erosion is alongshore-variable and episodic, with retreat rates that depend upon sediment as either tools of abrasion or protective cover. However, the feedbacks between coastal cliff planform morphology, retreat rate, and sediment cover are poorly quantified. This study investigates Sargent Beach, Texas, USA at the annual to interannual scale to explore (1) the relationship between temporal and spatial variability in both cliff retreat rate and roughness and (2) the response of retreat rate and roughness to changes in sediment cover of the underlying mud substrate and the impact of major storms, using the low-lying mudstone cliff as a rapidly evolving model of a larger cliff system. A storm event in 2009 increased the planform roughness and sinuosity of the coastal cliff at Sargent Beach, TX. Following the storm, satellite image-derived shorelines with annual resolution show a decrease in average alongshore erosion rates from 4 to 12 m yr−1, coincident with a decrease in shoreline roughness and sinuosity (smoothing). A storm event in 2017 again increased the planform roughness and sinuosity of the cliff. The occurrence of storms and the presence of sediment to laterally erode the cliff influence the planform morphology and subsequent retreat. Over shorter timescales, monthly retreat of the sea cliff occurred only when the platform was sparsely covered with sediment cover on the wave cut platform, indicating that the tools and cover effects can significantly affect short-term erosion rates. The timescale to return to a smooth shoreline with a long-term steady-state erosion rate following a storm or roughening event is approximately five years, with the long-term rate suggesting a minimum of ~38 years until Sargent Beach breaches, compromising the Gulf Intracoastal Waterway (GIWW) under current conditions and assuming no future storms or intervention. The observed retreat rate varies, both spatially and temporally, with cliff face morphology, demonstrating the importance of multi-scale measurements and analysis for interpretation of coastal processes and patterns of cliff retreat.


2021 ◽  
Vol 433 ◽  
pp. 106405
Author(s):  
Timothée Duguet ◽  
Anne Duperret ◽  
Stéphane Costa ◽  
Vincent Regard ◽  
Grégoire Maillet
Keyword(s):  

2021 ◽  
Author(s):  
H. Bay Berry ◽  
Dustin Whalen ◽  
Michael Lim

Response of erosive mechanisms to climate change is of mounting concern on Beaufort Sea coasts, which experience some of the highest erosion rates in the Arctic. Collapse of intact permafrost blocks and slumping within sprawling retrogressive thaw complexes are two predominant mechanisms that manifest as cliff retreat in this region. Using aerial imagery and ground survey data from Pullen Island, N.W.T., Canada, from 13 time points between 1947 and 2018, we observe increasing mean retreat rates from 0 ± 4.8 m/a in 1947 to 12 ± 0.3 m/a in 2018. Mean summer air temperature was positively correlated with cliff retreat over each time step via block failure (r2 = 0.08; p = 0.5) and slumping (r2 = 0.41; p = 0.05), as was mean storm duration with cliff retreat via block failure (r2 = 0.84; p = 0.0002) and slumping (r2 = 0.34; p = 0.08). These data indicate that air temperature has a greater impact in slump-dominated areas, while storm duration has greater control in areas of block failure. Increasingly heterogeneous cliff retreat rates are likely resulting from different magnitudes of response to climate trends depending on mechanism, and on geomorphological variations that prescribe occurrences of retrogressive thaw slumps.


Sign in / Sign up

Export Citation Format

Share Document