scholarly journals Geological structure of the Khylly field according to 3D seismic data

2020 ◽  
Vol 59 (3) ◽  
pp. 52-61
Author(s):  
Tofik Rashid ogly AKHMEDOV ◽  
◽  
Aigyun Nemat kyzy SULTANOVA ◽  

Relevance of the work. The paper considers challenging problems related with outlining of intervals with oil and gas presence in the mature Khylly field by use of latest 3D seismic survey techniques in order to gain larger crude resources base. The purpose of this research is to discover the most promising intervals of target horizons with relatively high reservoir properties outlined by 3D seismic data. The subjects of research are 3D seismic survey data, downhole seismic survey – Vertical Seismic Profiling (VSP) and well logging diagrams. The object of research is the Khylly deposit. The paper describes in brief geological and geophysical characteristics, stratigraphic and lithological features of rocks making the section. It is noted that despite repeated surveys by use of various geological and geophysical techniques, the field setting is not thoroughly studied and it has been covered by 3D seismic survey in 2012. Research results. 3D seismic survey applied across Khylly area is resulted in drawing of 4 structural maps for III and I horizons of Productive Series (PS), Akchagyl and Lower Absheron suites. Taking into account the relevance of structural planes of various stratigraphic levels and III horizon of PS being one of the major reference horizons the paper gives description of structural map drawn for this horizon. The detailed velocity model is designed based on VSP data with wide use of velocity analysis data. It has been made clear that Khylly area has block structure and each block has been described in detail. Based on acquired data it has been recommended to drill exploratory well R-1. Conclusion. Processing and interpretation of seismic data are aimed at solving some geological problems; the main task was to obtain results that ensure the study of the geological structure in the seismic survey area, including tracing of seismic horizons, faults and outlining the areas and section intervals which may be of interest due to possible oil and gas presence. VSP data acquired in well 2012 and velocity analysis made it possible to design velocity model of the section under the study, with the use of which the temporary 3D cube was transformed into a depth cube. The quality of seismic data is good and made it possible to solve the tasks set for this research.

2012 ◽  
Vol 91 (4) ◽  
pp. 419-446 ◽  
Author(s):  
H. Kombrink ◽  
J.C. Doornenbal ◽  
E.J.T. Duin ◽  
M. den Dulk ◽  
J.H. ten Veen ◽  
...  

AbstractA five years geological mapping project, in which the Netherlands Continental Shelf has been re-examined using all publicly available data, resulted in an important update of the existing dataset. The stratigraphy of over 400 wells has been re-interpreted. New depth and thickness grids, based mainly on the interpretation of 3D seismic data have been produced for the most important stratigraphic intervals from Permian Upper Rotliegend to Neogene. New reservoir grids describe the top, base and thickness of 30 (potential) reservoir units in the area. In addition, the uncertainty related to interpretation and further processing of the data has been assessed. This resulted in maps displaying the standard deviation for the depth of the main stratigraphic intervals. Based on these results and the data already available for the onshore area, an updated structural element map was made for the Netherlands.


2019 ◽  
Vol 7 (3) ◽  
pp. SG1-SG9
Author(s):  
Donald A. Herron ◽  
Timothy E. Smith

Despite the ever-increasing use of 3D seismic data in today’s exploration and production activities, 2D seismic data continue to play an important role in the oil and gas industry. Interpretations of 2D regional and megaregional surveys are essential elements of integrated exploration programs, establishing frameworks for basin analysis, structural synthesis, and play fairway identification and mapping. When correlating and mapping horizons on 2D migrated seismic data, interpreters use certain practical techniques for handling structural misties, which are caused by the fundamental limitation of 2D migration to account for out-of-plane components of dip.


2019 ◽  
Author(s):  
V.N. Borodkin ◽  
A.R. Kurchikov ◽  
V.I. Samitova ◽  
A.V. Lukashov ◽  
A.S. Nedosekin ◽  
...  

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. B33-B46 ◽  
Author(s):  
Alireza Malehmir ◽  
Ari Tryggvason ◽  
Chris Wijns ◽  
Emilia Koivisto ◽  
Teemu Lindqvist ◽  
...  

Kevitsa is a disseminated Ni-Cu-PGE (platinum group elements) ore body in northern Finland, hosted by an extremely high-velocity ([Formula: see text]) ultramafic intrusion. It is currently being mined at a depth of approximately 100 m with open-pit mining. The estimated mine life is 20 years, with the final pit reaching a depth of 500–600 m. Based on a series of 2D seismic surveys and given the expected mine life, a high-resolution 3D seismic survey was justified and conducted in the winter of 2010. We evaluate earlier 3D reflection data processing results and complement that by the results of 3D first-arrival traveltime tomography. The combined results provide insights on the nature of some of the reflectors within the intrusion. In particular, a major discontinuity, a weakness zone, is delineated in the tomography results on the northern side of the planned pit. Supported by the reflection data, we estimate the discontinuity, likely a thrust sheet, to extend down approximately 600 m and laterally 1000 m. The weakness zone terminates prominent internal reflectivity of the Kevitsa intrusion, and it is associated with the extent of the economic mineralization. Together with other weakness zones, a couple of which are also revealed by the tomography study, the discontinuity forms a major wedge block that influences the mine bench stability on the northern side of the open pit and likely will cause more issues during the extraction of the ore in this part of the mine. We argue that 3D seismic data should routinely be acquired prior to commencement of mining activities to maximize exploration efficiency at depth and also to optimize mining as it continues toward depth. Three-dimensional seismic data over mineral exploration areas are valuable and can be revisited for different purposes but are difficult to impossible to acquire after mining has commenced.


2017 ◽  
Vol 5 (2) ◽  
pp. SF177-SF188 ◽  
Author(s):  
Wei Wang ◽  
Xiangzeng Wang ◽  
Hongliu Zeng ◽  
Quansheng Liang

In the study area, southeast of Ordos Basin in China, thick lacustrine shale/mudstone strata have been developed in the Triassic Yanchang Formation. Aiming to study these source/reservoir rocks, a 3D full-azimuth, high-density seismic survey was acquired. However, the surface in this region is covered by a thick loess layer, leading to seismic challenges such as complicated interferences and serious absorption of high frequencies. Despite a specially targeted seismic processing workflow, the prestack Kirchhoff time-migrated seismic data were still contaminated by severe noise, hindering seismic inversion and geologic interpretation. By taking account of the particular data quality and noise characteristics, we have developed a cascade workflow including three major methods to condition the poststack 3D seismic data. First, we removed the sticky coherent noise by a local pseudo [Formula: see text]-[Formula: see text]-[Formula: see text] Cadzow filtering. Then, we diminished the random noise by a structure-oriented filtering. Finally, we extended the frequency bandwidth with a spectral-balancing method based on the continuous wavelet transform. The data quality was improved after each of these steps through the proposed workflow. Compared with the original data, the conditioned final data show improved interpretability of the shale targets through geometric attribute analysis and depositional interpretation.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 534
Author(s):  
Fateh Bouchaala ◽  
Mohammed Y. Ali ◽  
Jun Matsushima ◽  
Youcef Bouzidi ◽  
Mohammed S. Jouini ◽  
...  

Previous studies performed in Abu Dhabi oilfields, United Arab Emirates, revealed the direct link of seismic wave attenuation to petrophysical properties of rocks. However, all those studies were based on zero offset VSP data, which limits the attenuation estimation at one location only. This is due to the difficulty of estimating attenuation from 3D seismic data, especially in carbonate rocks. To overcome this difficulty, we developed a workflow based on the centroid frequency shift method and Gabor transform which is optimized by using VSP data. The workflow was applied on 3D Ocean Bottom Cable seismic data. Distinct attenuation anomalies were observed in highly heterogeneous and saturated zones, such as the reservoirs and aquifers. Scattering shows significant contribution in attenuation anomalies, which is unusual in sandstones. This is due to the complex texture and heterogeneous nature of carbonate rocks. Furthermore, attenuation mechanisms such as frictional relative movement between fluids and solid grains, are most likely other important causes of attenuation anomalies. The slight lateral variation of attenuation reflects the lateral homogeneous stratigraphy of the oilfield. The results demonstrate the potential of seismic wave attenuation for delineating heterogeneous zones with high fluid content, which can substantially help for enhancing oil recovery.


Sign in / Sign up

Export Citation Format

Share Document