scholarly journals A Generalized Construction of Calabi-Yau Models and Mirror Symmetry

2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Per Berglund ◽  
Tristan Hubsch

We extend the construction of Calabi-Yau manifolds to hypersurfaces in non-Fano toric varieties, requiring the use of certain Laurent defining polynomials, and explore the phases of the corresponding gauged linear sigma models. The associated non-reflexive and non-convex polytopes provide a generalization of Batyrev’s original work, allowing us to construct novel pairs of mirror models. We showcase our proposal for this generalization by examining Calabi-Yau hypersurfaces in Hirzebruch n-folds, focusing on n=3,4 sequences, and outline the more general class of so-defined geometries.

1989 ◽  
Vol 04 (24) ◽  
pp. 2397-2407 ◽  
Author(s):  
P. ELLICOTT ◽  
G. KUNSTATTER ◽  
D.J. TOMS

A geometrical derivation of the Faddeev-Popov measure is presented. This derivation is valid in any gauge for a general class of gauge theories, including Yang-Mills theory, gravitation and non-linear sigma models, and can easily be generalized to include supersymmetric theories. We stress the role of a non-trivial, finite contribution to the effective action from the invariant measure on the orbit over each point in the physical configuration space.


2010 ◽  
Vol 829 (1-2) ◽  
pp. 161-175 ◽  
Author(s):  
Yi-Xin Chen ◽  
Yong-Qiang Wang

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Garrett Goon ◽  
Scott Melville ◽  
Johannes Noller

Abstract We study quantum corrections to hypersurfaces of dimension d + 1 > 2 embedded in generic higher-dimensional spacetimes. Manifest covariance is maintained throughout the analysis and our methods are valid for arbitrary co-dimension and arbitrary bulk metric. A variety of theories which are prominent in the modern amplitude literature arise as special limits: the scalar sector of Dirac-Born-Infeld theories and their multi-field variants, as well as generic non-linear sigma models and extensions thereof. Our explicit one-loop results unite the leading corrections of all such models under a single umbrella. In contrast to naive computations which generate effective actions that appear to violate the non-linear symmetries of their classical counterparts, our efficient methods maintain manifest covariance at all stages and make the symmetry properties of the quantum action clear. We provide an explicit comparison between our compact construction and other approaches and demonstrate the ultimate physical equivalence between the superficially different results.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ilka Brunner ◽  
Fabian Klos ◽  
Daniel Roggenkamp

Abstract In this paper, we construct defects (domain walls) that connect different phases of two-dimensional gauged linear sigma models (GLSMs), as well as defects that embed those phases into the GLSMs. Via their action on boundary conditions these defects give rise to functors between the D-brane categories, which respectively describe the transport of D-branes between different phases, and embed the D-brane categories of the phases into the category of D-branes of the GLSMs.


1995 ◽  
Vol 446 (1-2) ◽  
pp. 211-222 ◽  
Author(s):  
Jan de Boer ◽  
Bas Peeters ◽  
Kostas Skenderis ◽  
Peter van Nieuwenhuizen

1989 ◽  
Vol 04 (14) ◽  
pp. 1343-1353 ◽  
Author(s):  
T.E. CLARK ◽  
C.-H. LEE ◽  
S.T. LOVE

The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.


2001 ◽  
Vol 593 (1-2) ◽  
pp. 155-182 ◽  
Author(s):  
Suresh Govindarajan ◽  
T. Jayaraman ◽  
Tapobrata Sarkar

Sign in / Sign up

Export Citation Format

Share Document