scholarly journals Diffusion in generalized hydrodynamics and quasiparticle scattering

2019 ◽  
Vol 6 (4) ◽  
Author(s):  
Jacopo De Nardis ◽  
Denis Bernard ◽  
Benjamin Doyon

We extend beyond the Euler scales the hydrodynamic theory for quantum and classical integrable models developed in recent years, accounting for diffusive dynamics and local entropy production. We review how the diffusive scale can be reached via a gradient expansion of the expectation values of the conserved fields and how the coefficients of the expansion can be computed via integrated steady-state two-point correlation functions, emphasising that {\mathcal PT}𝒫T-symmetry can fully fix the inherent ambiguity in the definition of conserved fields at the diffusive scale. We develop a form factor expansion to compute such correlation functions and we show that, while the dynamics at the Euler scale is completely determined by the density of single quasiparticle excitations on top of the local steady state, diffusion is due to scattering processes among quasiparticles, which are only present in truly interacting systems. We then show that only two-quasiparticle scattering processes contribute to the diffusive dynamics. Finally we employ the theory to compute the exact spin diffusion constant of a gapped XXZ spin-1/2−1/2 chain at finite temperature and half-filling, where we show that spin transport is purely diffusive.

2014 ◽  
Vol 331 (1) ◽  
pp. 261-295 ◽  
Author(s):  
H. D. Cornean ◽  
V. Moldoveanu ◽  
C.-A. Pillet

2010 ◽  
Vol 12 (6) ◽  
pp. 839-842 ◽  
Author(s):  
Tatsuo Noda ◽  
Katsumi Hamamoto ◽  
Maiko Tsutsumi ◽  
Seiya Tsujimura ◽  
Osamu Shirai ◽  
...  

1957 ◽  
Vol 24 (4) ◽  
pp. 494-496
Author(s):  
J. F. Osterle ◽  
Y. T. Chou ◽  
E. A. Saibel

Abstract The Reynolds equation of hydrodynamic theory, modified to take lubricant inertia into approximate account, is applied to the steady-state operation of journal bearings to determine the effect of lubricant inertia on the pressure developed in the lubricant. A simple relationship results, relating this “inertial” pressure to the Reynolds number of the flow. It is found that the inertia effect can be significant in the laminar regime.


2021 ◽  
Vol 2 (4) ◽  
pp. 778-795
Author(s):  
Mark P. Heitz ◽  
Tyler J. Sabo ◽  
Stephanie M. Robillard

Magic angle intensity decay and dynamic fluorescence anisotropy measurements were made on the binary solvent system composed of ethylammonium nitrate ([N2,0,0,0+][NO3−], EAN) + methanol (MeOH) across the complete EAN mole fraction range (xIL = 0–1) using the neutral dipolar solute coumarin 153 (C153) at 295 K. Stokes–Einstein–Debye (SED) hydrodynamic theory was used as a model framework to assess the C153 rotational reorientation dynamics. Departure from stick SED prediction was observed (in contrast to literature reports that used cationic or anionic dyes) and indicated a significant influence of domain nanoheterogeneity on probe dynamics. Steady-state spectroscopy indicated minimal changes in spectral peak and width with mole fraction, except at xIL = 0.3 where absorption widths decreased by ~170 cm−1, signaling that C153 sensed a change in solution heterogeneity. Magic angle intensity decays corroborated the steady-state observation and the excited-state lifetimes showed a marked change from xIL = 0.2–0.4 where EAN-EAN interactions became notably more significant. C153 average rotation times (⟨τrot⟩) showed significant solvent decoupling with increased EAN. The rotational data were fit to a power law dependence, ⟨τrot⟩ ∝ (ηT)p, where p = 0.82, demonstrating the presence of dynamic heterogeneity in the EAN/MeOH solutions. With increased EAN, rotation times showed that the heterogeneity became increasingly more significant since the rotation times systematically decreased away from the hydrodynamic stick limit.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Oussama Ibrahim ◽  
Farouk Fardoun ◽  
Rafic Younes ◽  
Mohamad Ibrahim

The performance of a flat-plate solar collector is usually assessed by its efficiency. This efficiency is normally defined on a steady-state basis, which makes it difficult to correctly track the instantaneous performance of the collector in various case-studies. Accordingly, this paper proposes an improved definition of instantaneous efficiency of a flat-plate solar collector used as a part of a solar water heating system. Using a predeveloped model by the authors for such a system, the proposed efficiency-definition is examined and compared with the conventional one for specific case studies. The results show that the improved definition of efficiency records reasonable values, i.e., no over-range values are observed contrast to the case of conventional efficiency-definition. Furthermore, this suggested efficiency approximately coincides with the conventional one at a wide range of time, as long as the system is operating in the so-called trans-steady-state phase or when the system is off-operational provided that the instantaneous rate of heat stored in the heat transfer fluid (HTF) is less than or equal to zero. As a result, the improved efficiency-definition yields more realistic results in reflecting the performance of a flat-plate collector in an active solar water heating system and is recommended to be used.


1981 ◽  
Vol 13 (04) ◽  
pp. 720-735 ◽  
Author(s):  
A. D. Barbour ◽  
R. Schassberger

For a broad class of stochastic processes, the generalized semi-Markov processes, conditions are known which imply that the steady state distribution of the process, when it exists, depends only on the means, and not the exact shapes, of certain lifetime distributions entering the definition of the process. It is shown in the present paper that this insensitivity extends to certain average and conditional average residence times. Particularly interesting applications can be found in the field of networks of queues.


Sign in / Sign up

Export Citation Format

Share Document