scholarly journals The multi-faceted inverted harmonic oscillator: Chaos and complexity

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Arpan Bhattacharyya ◽  
Wissam Chemissany ◽  
S. Shajidul Haque ◽  
Jeff Murugan ◽  
Bin Yan

The harmonic oscillator is the paragon of physical models; conceptually and computationally simple, yet rich enough to teach us about physics on scales that span classical mechanics to quantum field theory. This multifaceted nature extends also to its inverted counterpart, in which the oscillator frequency is analytically continued to pure imaginary values. In this article we probe the inverted harmonic oscillator (IHO) with recently developed quantum chaos diagnostics such as the out-of-time-order correlator (OTOC) and the circuit complexity. In particular, we study the OTOC for the displacement operator of the IHO with and without a non-Gaussian cubic perturbation to explore genuine and quasi scrambling respectively. In addition, we compute the full quantum Lyapunov spectrum for the inverted oscillator, finding a paired structure among the Lyapunov exponents. We also use the Heisenberg group to compute the complexity for the time evolved displacement operator, which displays chaotic behaviour. Finally, we extended our analysis to N-inverted harmonic oscillators to study the behaviour of complexity at the different timescales encoded in dissipation, scrambling and asymptotic regimes.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Arpan Bhattacharyya ◽  
S. Shajidul Haque ◽  
Eugene H. Kim

Abstract We investigate circuit complexity to characterize chaos in multiparticle quantum systems. In the process, we take a stride to analyze open quantum systems by using complexity. We propose a new diagnostic of quantum chaos from complexity based on the reduced density matrix by exploring different types of quantum circuits. Through explicit calculations on a toy model of two coupled harmonic oscillators, where one or both of the oscillators are inverted, we demonstrate that the evolution of complexity is a possible diagnostic of chaos.


2014 ◽  
Vol 4 (1) ◽  
pp. 404-426
Author(s):  
Vincze Gy. Szasz A.

Phenomena of damped harmonic oscillator is important in the description of the elementary dissipative processes of linear responses in our physical world. Its classical description is clear and understood, however it is not so in the quantum physics, where it also has a basic role. Starting from the Rosen-Chambers restricted variation principle a Hamilton like variation approach to the damped harmonic oscillator will be given. The usual formalisms of classical mechanics, as Lagrangian, Hamiltonian, Poisson brackets, will be covered too. We shall introduce two Poisson brackets. The first one has only mathematical meaning and for the second, the so-called constitutive Poisson brackets, a physical interpretation will be presented. We shall show that only the fundamental constitutive Poisson brackets are not invariant throughout the motion of the damped oscillator, but these show a kind of universal time dependence in the universal time scale of the damped oscillator. The quantum mechanical Poisson brackets and commutation relations belonging to these fundamental time dependent classical brackets will be described. Our objective in this work is giving clearer view to the challenge of the dissipative quantum oscillator.


2017 ◽  
Vol 27 (11) ◽  
pp. 1730037 ◽  
Author(s):  
J. C. Sprott ◽  
W. G. Hoover

Dynamical systems with special properties are continually being proposed and studied. Many of these systems are variants of the simple harmonic oscillator with nonlinear damping. This paper characterizes these systems as a hierarchy of increasingly complicated equations with correspondingly interesting behavior, including coexisting attractors, chaos in the absence of equilibria, and strange attractor/repellor pairs.


2017 ◽  
Vol 2017 (10) ◽  
Author(s):  
Robert A. Jefferson ◽  
Robert C. Myers

2018 ◽  
Vol 64 (1) ◽  
pp. 30
Author(s):  
Surarit Pepore

The application of the integrals of the motion of a quantum system in deriving Green function or propagator is established. The Greenfunction is shown to be the eigenfunction of the integrals of the motion which described initial points of the system trajectory in the phasespace. The explicit expressions for the Green functions of the damped harmonic oscillator, the harmonic oscillator with strongly pulsatingmass, and the harmonic oscillator with mass growing with time are obtained in co-ordinate representations. The connection between theintegrals of the motion method and other method such as Feynman path integral and Schwinger method are also discussed.


Author(s):  
C.V Sukumar ◽  
Andrew Hodges

We study the structure of a quantum algebra in which a parity-violating term modifies the standard commutation relation between the creation and annihilation operators of the simple harmonic oscillator. We discuss several useful applications of the modified algebra. We show that the Bernoulli and Euler numbers arise naturally in a special case. We also show a connection with Gaussian and non-Gaussian squeezed states of the simple harmonic oscillator. Such states have been considered in quantum optics. The combinatorial theory of Bernoulli and Euler numbers is developed and used to calculate matrix elements for squeezed states.


1993 ◽  
Vol 48 (5) ◽  
pp. 3518-3528 ◽  
Author(s):  
T. Szeredi ◽  
D. A. Goodings

1989 ◽  
Vol 04 (09) ◽  
pp. 2211-2233 ◽  
Author(s):  
YANNICK MEURICE

Starting from a difference equation corresponding to the harmonic oscillator, we discuss various properties of the classical motion (cycles, conserved quantity, boundedness, continuum limit) when the dynamical variables take their values on Galois or p-adic fields. We show that these properties can be applied as a technical tool to calculate the motion on the real numbers. On the other hand, we also give an example where the motions over Galois and p-adic fields have a direct physical interpretation. Some perspectives for quantum field theory and strings are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document