scholarly journals Black holes, quantum chaos, and the Riemann hypothesis

2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Panagiotis Betzios ◽  
Nava Gaddam ◽  
Olga Papadoulaki

Quantum gravity is expected to gauge all global symmetries of effective theories, in the ultraviolet. Inspired by this expectation, we explore the consequences of gauging CPT as a quantum boundary condition in phase space. We find that it provides for a natural semiclassical regularisation and discretisation of the continuous spectrum of a quantum Hamiltonian related to the Dilation operator. We observe that the said spectrum is in correspondence with the zeros of the Riemann zeta and Dirichlet beta functions. Following ideas of Berry and Keating, this may help the pursuit of the Riemann hypothesis. It strengthens the proposal that this quantum Hamiltonian captures the near horizon dynamics of the scattering matrix of the Schwarzschild black hole, given the rich chaotic spectrum upon discretisation. It also explains why the spectrum appears to be erratic despite the unitarity of the scattering matrix.

2021 ◽  
Author(s):  
Frank Vega

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems and it is one of the Clay Mathematics Institute's Millennium Prize Problems. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)< e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n> 5040$, where $\sigma(x)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1} > e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}> 2$, where $\theta(x)$ is the Chebyshev function. Using both inequalities, we show that the Riemann hypothesis is most likely true.


1992 ◽  
Vol 111 (2) ◽  
pp. 399-415
Author(s):  
Kazuhiro Yamamoto

In this paper we shall prove an existence theorem and give applications of an outgoing solution of the following problem:where L(x, x) is a second order elliptic differential operator with a potential term q(x), is an exterior domain of ℝn (where n 2) with the C2-class boundary , k is an element of the complex plane or of a logarithmic Riemann surface, and B is either a Dirichlet boundary condition or of the form Bu = vj(x) ajk(x) ku + (x)u with the unit outer normal vector v(x) = (vl,, vn) at x.


2021 ◽  
Author(s):  
Frank Vega

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems. Besides, it is one of the Clay Mathematics Institute's Millennium Prize Problems. This problem has remained unsolved for many years. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)< e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n>5040$, where $\sigma(x)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1}>e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}>2$, where $\theta(x)$ is the Chebyshev function. Using both inequalities, we show that the Riemann hypothesis is true.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2410
Author(s):  
Janyarak Tongsomporn ◽  
Saeree Wananiyakul ◽  
Jörn Steuding

In this paper, we prove an asymptotic formula for the sum of the values of the periodic zeta-function at the nontrivial zeros of the Riemann zeta-function (up to some height) which are symmetrical on the real line and the critical line. This is an extension of the previous results due to Garunkštis, Kalpokas, and, more recently, Sowa. Whereas Sowa’s approach was assuming the yet unproved Riemann hypothesis, our result holds unconditionally.


Author(s):  
Frank Vega

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the first correct solution. We prove the Riemann hypothesis using the Complexity Theory. Number theory is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. The Goldbach's conjecture is one of the most important and unsolved problems in number theory. Nowadays, it is one of the open problems of Hilbert and Landau. We show the Goldbach's conjecture is true using the Complexity Theory as well. An important complexity class is 1NSPACE(S(n)) for some S(n). These mathematical proofs are based on if some unary language belongs to 1NSPACE(S(log n)), then the binary version of that language belongs to 1NSPACE(S(n)) and vice versa.


Author(s):  
Darrell Cox

Relationships between the Farey sequence and the Riemann hypothesis other than the Franel-Landau theorem are discussed. Whether a function similar to Chebyshev&rsquo;s second function is square-root close to a line having a slope different from 1 is discussed. The nontrivial zeros of the Riemann zeta function can be used to approximate many functions in analytic number theory. For example, it could be said that the nontrival zeta function zeros and the M&ouml;bius function generate in essence the same function - the Mertens function. A different approach is to start with a sequence that is analogous to the nontrivial zeros of the zeta function and follow the same procedure with both this sequence and the nontrivial zeros of the zeta function to generate in essence the same function. A procedure for generating such a function is given.


2021 ◽  
Author(s):  
Frank Vega

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems. Besides, it is one of the Clay Mathematics Institute's Millennium Prize Problems. This problem has remained unsolved for many years. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)< e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n>5040$, where $\sigma(x)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1}>e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}>2$, where $\theta(x)$ is the Chebyshev function. Using both inequalities, we show that the Riemann hypothesis is true.


Author(s):  
Xiao-Jun Yang

In this paper we address some variants for the products of Hadamard and Patterson. We prove that all zeros of the Riemann $\Xi$--function are real. We also prove that the Riemann hypothesis is true. The equivalence theorems associated with the Riemann zeta--function are obtained in detail.


2020 ◽  
Author(s):  
Sourangshu Ghosh

In this paper, we shall try to prove the Riemann Hypothesis which is a conjecture that the Riemann zeta function hasits zeros only at the negative even integers and complex numbers with real part ½. This conjecture is very importantand of considerable interest in number theory because it tells us about the distribution of prime numbers along thereal line. This problem is one of the clay mathematics institute’s millennium problems and also comprises the 8ththe problem of Hilbert’s famous list of 23 unsolved problems. There have been many unsuccessful attempts in provingthe hypothesis. In this paper, we shall give proof to the Riemann Hypothesis.


1991 ◽  
Vol 122 ◽  
pp. 149-159 ◽  
Author(s):  
Hideki Nakaya

Let dz(n) be a multiplicative function defined bywhere s = σ + it, z is a. complex number, and ζ(s) is the Riemann zeta function. Here ζz(s) = exp(z log ζ(s)) and let log ζ(s) take real values for real s > 1. We note that if z is a natural number dz(n) coincides with the divisor function appearing in the Dirichlet-Piltz divisor problem, and d-1(n) with the Möbious function.


Sign in / Sign up

Export Citation Format

Share Document