scholarly journals Suppression of IL-8 production from airway cells by tiotropium bromide in vitro

Author(s):  
Kazuhito Asano ◽  
Isao Suzaki ◽  
Yusuke Shikama ◽  
Taisuke Hamasaki ◽  
Ayako Kanei ◽  
...  
Pneumologie ◽  
2008 ◽  
Vol 62 (S 2) ◽  
Author(s):  
K Dück ◽  
G Vacca ◽  
R Dück ◽  
M Pieper ◽  
A Gillissen
Keyword(s):  

2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Hannah Limburg ◽  
Anne Harbig ◽  
Dorothea Bestle ◽  
David A. Stein ◽  
Hong M. Moulton ◽  
...  

ABSTRACT Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is essential for virus infectivity and spread. We previously demonstrated in vitro that the transmembrane protease TMPRSS2 cleaves influenza A virus (IAV) and influenza B virus (IBV) HA possessing a monobasic cleavage site. Subsequent studies revealed that TMPRSS2 is crucial for the activation and pathogenesis of H1N1pdm and H7N9 IAV in mice. In contrast, activation of H3N2 IAV and IBV was found to be independent of TMPRSS2 expression and supported by an as-yet-undetermined protease(s). Here, we investigated the role of TMPRSS2 in proteolytic activation of IAV and IBV in three human airway cell culture systems: primary human bronchial epithelial cells (HBEC), primary type II alveolar epithelial cells (AECII), and Calu-3 cells. Knockdown of TMPRSS2 expression was performed using a previously described antisense peptide-conjugated phosphorodiamidate morpholino oligomer, T-ex5, that interferes with splicing of TMPRSS2 pre-mRNA, resulting in the expression of enzymatically inactive TMPRSS2. T-ex5 treatment produced efficient knockdown of active TMPRSS2 in all three airway cell culture models and prevented proteolytic activation and multiplication of H7N9 IAV in Calu-3 cells and H1N1pdm, H7N9, and H3N2 IAV in HBEC and AECII. T-ex5 treatment also inhibited the activation and spread of IBV in AECII but did not affect IBV activation in HBEC and Calu-3 cells. This study identifies TMPRSS2 as the major HA-activating protease of IAV in human airway cells and IBV in type II pneumocytes and as a potential target for the development of novel drugs to treat influenza infections. IMPORTANCE Influenza A viruses (IAV) and influenza B viruses (IBV) cause significant morbidity and mortality during seasonal outbreaks. Cleavage of the viral surface glycoprotein hemagglutinin (HA) by host proteases is a prerequisite for membrane fusion and essential for virus infectivity. Inhibition of relevant proteases provides a promising therapeutic approach that may avoid the development of drug resistance. HA of most influenza viruses is cleaved at a monobasic cleavage site, and a number of proteases have been shown to cleave HA in vitro. This study demonstrates that the transmembrane protease TMPRSS2 is the major HA-activating protease of IAV in primary human bronchial cells and of both IAV and IBV in primary human type II pneumocytes. It further reveals that human and murine airway cells can differ in their HA-cleaving protease repertoires. Our data will help drive the development of potent and selective protease inhibitors as novel drugs for influenza treatment.


Author(s):  
Ruobing Wang ◽  
Adam J. Hume ◽  
Mary Lou Beermann ◽  
Chantelle Simone-Roach ◽  
Jonathan Lindstrom-Vautrin ◽  
...  

There is an urgent need to understand how SARS-CoV-2 infects the airway epithelium and in a subset of individuals leads to severe illness or death. Induced pluripotent stem cells (iPSCs) provide a near limitless supply of human cells that can be differentiated into cell types of interest, including airway epithelium, for disease modeling. We present a human iPSC-derived airway epithelial platform, composed of the major airway epithelial cell types, that is permissive to SARS-CoV-2 infection. Subsets of iPSC-airway cells express the SARS-CoV-2 entry factors ACE2 and TMPRSS2. Multiciliated cells are the primary initial target of SARS-CoV-2 infection. Upon infection with SARS-CoV-2, iPSC-airway cells generate robust interferon and inflammatory responses and treatment with remdesivir or camostat methylate causes a decrease in viral propagation and entry, respectively. In conclusion, iPSC-derived airway cells provide a physiologically relevant in vitro model system to interrogate the pathogenesis of, and develop treatment strategies for, COVID-19 pneumonia.


1983 ◽  
Vol 55 (5) ◽  
pp. 1593-1602 ◽  
Author(s):  
R. J. Phipps ◽  
S. M. Denas ◽  
A. Wanner

We studied the effects of in vitro challenge with specific antigen (Ascaris suum antigen) on glycoprotein secretion and ion fluxes in tracheal tissues from allergic sheep. We mounted tissues in Perspex chambers and measured secretion of 35S- and 3H-labeled glycoproteins and fluxes of Cl- and Na+. In tissues from allergic sheep, A. suum antigen (25 micrograms protein X ml-1) increased glycoprotein secretion. A. suum antigen initially reversed net Cl- flux, causing net absorption of Cl- and of Na+. This was followed 15-30 min later by net secretion of Cl- and of Na+. Pretreatment of tissues with cromolyn (10(-4) M) greatly reduced the effects of A. suum antigen but did not abolish them. The cromolyn-resistant effects were nonspecific, because they were similar to those of in vitro challenges with nonspecific proteins, ovalbumin and ragweed in allergic sheep, and A. suum antigen in nonallergic sheep. We conclude that challenge with A. suum antigen results in mucus hypersecretion in airways of allergic sheep, by both specific and smaller nonspecific effects. Specific effects (cromolyn sensitive) are produced by mediators which are released from airway cells in response to A. suum challenge.


2005 ◽  
Vol 3 (2) ◽  
pp. 104-112 ◽  
Author(s):  
Sally-Ann Cryan ◽  
Marc Devocelle ◽  
Padraig J. Moran ◽  
Anthony J. Hickey ◽  
John G. Kelly

2020 ◽  
Vol 6 (47) ◽  
pp. eabc5911
Author(s):  
Anindit Mukherjee ◽  
Kelvin D. MacDonald ◽  
Jeonghwan Kim ◽  
Michael I. Henderson ◽  
Yulia Eygeris ◽  
...  

Cystic fibrosis (CF) results from mutations in the chloride-conducting CF transmembrane conductance regulator (CFTR) gene. Airway dehydration and impaired mucociliary clearance in CF is proposed to result in tonic epithelial sodium channel (ENaC) activity, which drives amiloride-sensitive electrogenic sodium absorption. Decreasing sodium absorption by inhibiting ENaC can reverse airway surface liquid dehydration. Here, we inhibit endogenous heterotrimeric ENaC channels by introducing inactivating mutant ENaC α mRNA (αmutENaC). Lipid nanoparticles carrying αmutENaC were transfected in CF-based airway cells in vitro and in vivo. We observed a significant decrease in macroscopic as well as amiloride-sensitive ENaC currents and an increase in airway surface liquid height in CF airway cells. Similarly, intranasal transfection of αmutENaC mRNA decreased amiloride-sensitive nasal potential difference in CFTRKO mice. These data suggest that mRNA-based ENaC inhibition is a powerful strategy for reducing mucus dehydration and has therapeutic potential for treating CF in all patients, independent of genotype.


2020 ◽  
Vol 19 (5) ◽  
pp. 752-761
Author(s):  
Rachael E. Rayner ◽  
Jack Wellmerling ◽  
Wissam Osman ◽  
Sean Honesty ◽  
Maria Alfaro ◽  
...  

2014 ◽  
Vol 141 (1) ◽  
pp. 198-205 ◽  
Author(s):  
Gary E. Hatch ◽  
Kelly E. Duncan ◽  
David Diaz-Sanchez ◽  
Michael T. Schmitt ◽  
Andrew J. Ghio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document