scholarly journals Protective Effects of Mogroside V on Oxidative Stress Induced by H2O2 in Skin Fibroblasts

2021 ◽  
Vol Volume 15 ◽  
pp. 4901-4909
Author(s):  
Qiuting Mo ◽  
Hao Fu ◽  
Dan Zhao ◽  
Jiachan Zhang ◽  
Changtao Wang ◽  
...  
2005 ◽  
Vol 28 (7) ◽  
pp. 1244-1248 ◽  
Author(s):  
Jin Nyoung Ho ◽  
Yoo Hyun Lee ◽  
Jong Seok Park ◽  
Woo Jin Jun ◽  
Hye Kyung Kim ◽  
...  

2010 ◽  
Vol 20 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Mi-Jung Ku ◽  
Myeong-Sook Lee ◽  
Hee-Jung Moon ◽  
Yong-Hwan Lee

2008 ◽  
Vol 13 (2) ◽  
pp. 84-89 ◽  
Author(s):  
Na-Ri Yi ◽  
Kyoung-Chun Seo ◽  
Ji-Myung Choi ◽  
Eun-Ju Cho ◽  
Young-Ok Song ◽  
...  

Author(s):  
Ok Kyung Kim ◽  
Da-Eun Nam ◽  
Min-Jae Lee ◽  
Namgil Kang ◽  
Jae-Youn Lim ◽  
...  

2016 ◽  
Vol 22 (4) ◽  
pp. 499-505 ◽  
Author(s):  
Hui Yan ◽  
Yongmei Li ◽  
Yali Yang ◽  
Zaijun Zhang ◽  
Gaoxiao Zhang ◽  
...  

2020 ◽  
Vol 21 (8) ◽  
pp. 626-632 ◽  
Author(s):  
Dawei Liu ◽  
Qinghua Wu ◽  
Hongyi Liu ◽  
Changhu Lu ◽  
Chao Gu ◽  
...  

Background: The red-crowned crane (Grus japonensis) is one of the most vulnerable bird species in the world. Mycotoxins are toxic secondary metabolites produced by fungi and considered naturally unavoidable contaminants in animal feed. Our recent survey indicated that the mycotoxins had the potential to contaminate redcrowned crane’s regular diets in China. Objective: This experiment was conducted to investigate the protective effects of mycotoxin binder montmorillonite (Mont) on growth performance, serum biochemistry and oxidative stress parameters of the red-crowned crane. Methods: 16 red-crowned cranes were divided into four groups and fed one of the following diets; a selected diet, regular diet, or the selected diet or regular diet with 0.5% montmorillonite added to the diets. The cranes' parameters of performance, hematology, serum biochemistry and serum oxidative stress were measured. Results: Consuming regular diets decreased the average daily feed intake (ADFI), levels of haemoglobin (Hb), platelet count (PLT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), but increased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK) and lactate dehydrogenase (LDH). The supplementation of 0.5% Mont provided protection for the red-crowned crane in terms of feed intake, serum biochemistry and oxidative stress. Moreover, Mont supplementation had no adverse effect on the health of red-crowned crane. Conclusions: Taken together, these findings suggested that the addition of dietary Mont is effective in improving the health of red-crowned crane.


2021 ◽  
pp. 1-9
Author(s):  
Hongmei Zhao ◽  
Yun Qiu ◽  
Yichen Wu ◽  
Hong Sun ◽  
Sumin Gao

<b><i>Introduction/Aims:</i></b> Hydrogen sulfide (H<sub>2</sub>S) is considered to be the third most important endogenous gasotransmitter in organisms. GYY4137 is a long-acting donor for H<sub>2</sub>S, a gas transmitter that has been shown to prevent multi-organ damage in animal studies. We previously reported the effect of GYY4137 on cardiac ischaemia reperfusion injury (IRI) in diabetic mice. However, the role and mechanism of GYY4137 in renal IRI are poorly understood. The aims of this study were to determine whether GYY4137 can effectively alleviate the injury induced by renal ischaemia reperfusion and to explore its possible mechanism. <b><i>Methods:</i></b> Mice received right nephrectomy and clipping of the left renal pedicle for 45 min. GYY4137 was administered by intraperitoneal injection for 2 consecutive days before the operation. The model of hypoxia/reoxygenation injury was established in HK-2 cells, which were pre-treated with or without GYY4137. Renal histology, function, apoptosis, and oxidative stress were measured. Western blot was used to measure the target ­protein after renal IRI. <b><i>Results:</i></b> The results indicated that GYY4137 had a clear protective effect on renal IRI as reflected by the attenuation of renal dysfunction, renal tubule injury, and apoptosis. Moreover, GYY4137 remarkably reduced renal IRI-induced oxidative stress. GYY4137 significantly elevated the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2) and the expression of antioxidant enzymes regulated by Nrf2, including SOD, HO-1, and NQO-1. <b><i>Conclusions:</i></b> GYY4137 alleviates ischaemia reperfusion-induced renal injury through activating the antioxidant effect mediated by Nrf2 signalling.


Sign in / Sign up

Export Citation Format

Share Document