scholarly journals CSF TNF-α Levels Were Associated with Longitudinal Change in Brain Glucose Metabolism Among Non-Demented Older People

2021 ◽  
Vol Volume 17 ◽  
pp. 1659-1666
Author(s):  
Pan Fu ◽  
Bihong Zhu ◽  
Yangping Huang
2021 ◽  
Vol 13 ◽  
Author(s):  
Xiwu Wang ◽  
Zhaoting Lv ◽  
Qian Wu ◽  
Huitao Liu ◽  
Yanrou Gu ◽  
...  

ObjectiveThere is growing evidence that testosterone may be implicated in the pathogenesis of Alzheimer’s disease (AD). We aimed to examine the relationship between plasma total testosterone levels and change in brain glucose metabolism over time among non-demented older people.MethodsThe association of plasma total testosterone levels with change in brain glucose metabolism among non-demented older people was investigated cross-sectionally and longitudinally. Given a significant difference in levels of plasma total testosterone between gender, we performed our analysis in a sex-stratified way. At baseline, 228 non-demented older people were included: 152 males and 76 females.ResultsIn the cross-sectional analysis, no significant relationship between plasma total testosterone levels and brain glucose metabolism was found in males or females. In the longitudinal analysis, we found a significant association of plasma total testosterone levels with change in brain glucose metabolism over time in males, but not in females. More specifically, in males, higher levels of total testosterone in plasma at baseline were associated with slower decline in brain glucose metabolism.ConclusionWe found that higher levels of total testosterone in plasma at baseline were associated with slower decline in brain glucose metabolism in males without dementia, indicating that testosterone may have beneficial effects on brain function.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Julien Delrieu ◽  
Thierry Voisin ◽  
Laure Saint-Aubert ◽  
Isabelle Carrie ◽  
Christelle Cantet ◽  
...  

Abstract Background The Multidomain Alzheimer Preventive Trial (MAPT) was designed to assess the efficacy of omega-3 fatty acid supplementation, multidomain intervention (MI), or a combination of both on cognition. Although the MAPT study was negative, an effect of MI in maintaining cognitive functions compared to placebo group was showed in positive amyloid subjects. A FDG PET study (MAPT-NI) was implemented to test the impact of MI on brain glucose metabolism. Methods MAPT-NI was a randomized, controlled parallel-group single-center study, exploring the effect of MI on brain glucose metabolism. Participants were non-demented and had memory complaints, limitation in one instrumental activity of daily living, or slow gait. Participants were randomly assigned (1:1) to “MI group” or “No MI group.” The MI consisted of group sessions focusing on 3 domains: cognitive stimulation, physical activity, nutrition, and a preventive consultation. [18F]FDG PET scans were performed at baseline, 6 months, and 12 months, and cerebral magnetic resonance imaging scans at baseline. The primary objective was to evaluate the MI effect on brain glucose metabolism assessed by [18F]FDG PET imaging at 6 months. The primary outcome was the quantification of regional metabolism rate for glucose in cerebral regions involved early in Alzheimer disease by relative semi-quantitative SUVr (FDG-based AD biomarker). An exploratory voxel-wise analysis was performed to assess the effect of MI on brain glucose metabolism without anatomical hypothesis. Results The intention-to-treat population included 67 subjects (34 in the MI group and 33 in the No MI group. No significant MI effect was observed on primary outcome at 6 months. In the exploratory voxel-wise analysis, we observed a difference in favor of MI group on the change of cerebral glucose metabolism in limbic lobe (right hippocampus, right posterior cingulate, left posterior parahippocampal gyrus) at 6 months. Conclusions MI failed to show an effect on metabolism in FDG-based AD biomarker, but exploratory analysis suggested positive effect on limbic system metabolism. This finding could suggest a delay effect of MI on AD progression. Trial registration ClinicalTrials.gov Identifier, NCT01513252.


2020 ◽  
Vol 16 (S10) ◽  
Author(s):  
Sarah Wehle Gehres ◽  
Andreia Silva da Rocha ◽  
Yuri Elias Rodrigues ◽  
Guilherme G Schu Peixoto ◽  
Afonso Kopczynski Carvalho ◽  
...  

2021 ◽  
Vol 10 (7) ◽  
pp. 1532
Author(s):  
Eleni Rebelos ◽  
Juha O. Rinne ◽  
Pirjo Nuutila ◽  
Laura L. Ekblad

Imaging brain glucose metabolism with fluorine-labelled fluorodeoxyglucose ([18F]-FDG) positron emission tomography (PET) has long been utilized to aid the diagnosis of memory disorders, in particular in differentiating Alzheimer’s disease (AD) from other neurological conditions causing cognitive decline. The interest for studying brain glucose metabolism in the context of metabolic disorders has arisen more recently. Obesity and type 2 diabetes—two diseases characterized by systemic insulin resistance—are associated with an increased risk for AD. Along with the well-defined patterns of fasting [18F]-FDG-PET changes that occur in AD, recent evidence has shown alterations in fasting and insulin-stimulated brain glucose metabolism also in obesity and systemic insulin resistance. Thus, it is important to clarify whether changes in brain glucose metabolism are just an epiphenomenon of the pathophysiology of the metabolic and neurologic disorders, or a crucial determinant of their pathophysiologic cascade. In this review, we discuss the current knowledge regarding alterations in brain glucose metabolism, studied with [18F]-FDG-PET from metabolic disorders to AD, with a special focus on how manipulation of insulin levels affects brain glucose metabolism in health and in systemic insulin resistance. A better understanding of alterations in brain glucose metabolism in health, obesity, and neurodegeneration, and the relationships between insulin resistance and central nervous system glucose metabolism may be an important step for the battle against metabolic and cognitive disorders.


2013 ◽  
Vol 260 (7) ◽  
pp. 1922-1924 ◽  
Author(s):  
Valtteri Kaasinen ◽  
Maria Gardberg ◽  
Marko Seppänen ◽  
Matias Röyttä ◽  
Riitta Parkkola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document