scholarly journals Targeted therapy and personalized medicine in gastrointestinal stromal tumors: drug resistance, mechanisms, and treatment strategies

2019 ◽  
Vol Volume 12 ◽  
pp. 5123-5133 ◽  
Author(s):  
George Z Li ◽  
Chandrajit P Raut
2018 ◽  
Vol 62 (4) ◽  
pp. 583-593 ◽  
Author(s):  
Peter T. Harrison ◽  
Paul H. Huang

Drug resistance remains one of the greatest challenges facing precision oncology today. Despite the vast array of resistance mechanisms that cancer cells employ to subvert the effects of targeted therapy, a deep understanding of cancer signalling networks has led to the development of novel strategies to tackle resistance both in the first-line and salvage therapy settings. In this review, we provide a brief overview of the major classes of resistance mechanisms to targeted therapy, including signalling reprogramming and tumour evolution; our discussion also focuses on the use of different forms of polytherapies (such as inhibitor combinations, multi-target kinase inhibitors and HSP90 inhibitors) as a means of combating resistance. The promise and challenges facing each of these polytherapies are elaborated with a perspective on how to effectively deploy such therapies in patients. We highlight efforts to harness computational approaches to predict effective polytherapies and the emerging view that exceptional responders may hold the key to better understanding drug resistance. This review underscores the importance of polytherapies as an effective means of targeting resistance signalling networks and achieving durable clinical responses in the era of personalised cancer medicine.


Author(s):  
Piotr Rutkowski ◽  
Joanna Przybył ◽  
Agnieszka Wozniak ◽  
Giuseppe Badalamenti

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zuan-Fu Lim ◽  
Patrick C. Ma

AbstractThe biggest hurdle to targeted cancer therapy is the inevitable emergence of drug resistance. Tumor cells employ different mechanisms to resist the targeting agent. Most commonly in EGFR-mutant non-small cell lung cancer, secondary resistance mutations on the target kinase domain emerge to diminish the binding affinity of first- and second-generation inhibitors. Other alternative resistance mechanisms include activating complementary bypass pathways and phenotypic transformation. Sequential monotherapies promise to temporarily address the problem of acquired drug resistance, but evidently are limited by the tumor cells’ ability to adapt and evolve new resistance mechanisms to persist in the drug environment. Recent studies have nominated a model of drug resistance and tumor progression under targeted therapy as a result of a small subpopulation of cells being able to endure the drug (minimal residual disease cells) and eventually develop further mutations that allow them to regrow and become the dominant population in the therapy-resistant tumor. This subpopulation of cells appears to have developed through a subclonal event, resulting in driver mutations different from the driver mutation that is tumor-initiating in the most common ancestor. As such, an understanding of intratumoral heterogeneity—the driving force behind minimal residual disease—is vital for the identification of resistance drivers that results from branching evolution. Currently available methods allow for a more comprehensive and holistic analysis of tumor heterogeneity in that issues associated with spatial and temporal heterogeneity can now be properly addressed. This review provides some background regarding intratumoral heterogeneity and how it leads to incomplete molecular response to targeted therapies, and proposes the use of single-cell methods, sequential liquid biopsy, and multiregion sequencing to discover the link between intratumoral heterogeneity and early adaptive drug resistance. In summary, minimal residual disease as a result of intratumoral heterogeneity is the earliest form of acquired drug resistance. Emerging technologies such as liquid biopsy and single-cell methods allow for studying targetable drivers of minimal residual disease and contribute to preemptive combinatorial targeting of both drivers of the tumor and its minimal residual disease cells.


2008 ◽  
Vol 23 (2) ◽  
pp. 96-110 ◽  
Author(s):  
R. Sarmiento ◽  
P. Bonginelli ◽  
F. Cacciamani ◽  
F. Salerno ◽  
G. Gasparini

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. GISTs represent a distinct category of tumors characterized by oncogenic mutations of the KIT receptor tyrosine kinase in a majority of patients. KIT is useful not only for the diagnosis but also for targeted therapy of this disease. Imatinib, a tyrosine kinase inhibitor, is widely used in advanced and metastatic GISTs. This agent revolutionized the treatment strategy of advanced disease and is being tested in the neoadjuvant and adjuvant settings with encouraging results. New therapeutic agents like sunitinib have now been approved, enriching the treatment scenario for imatinib-resistant GISTs. The present review reports on the peculiar characteristics of this disease through its biology and molecular patterns, focusing on the predictive value of KIT mutations and their correlation with clinical outcome as well as on the activity of and resistance to approved targeted drugs.


2008 ◽  
Vol 23 (2) ◽  
pp. 96-110 ◽  
Author(s):  
R. Sarmiento ◽  
P. Bonginelli ◽  
F. Cacciamani ◽  
F. Salerno ◽  
G. Gasparini

Sign in / Sign up

Export Citation Format

Share Document