scholarly journals RTP (Rapid thermal Processing) technique

1991 ◽  
Vol 75 (Appendix) ◽  
pp. 239-240
Author(s):  
Takashi Hori
1987 ◽  
Vol 92 ◽  
Author(s):  
U. Neta ◽  
V. Richter ◽  
R. Kalish

ABSTRACTA new Rapid Thermal Processing technique based on heating by irradiation from CO2 laser is presented. It is particularly suitable for thermal treatment of low melting temperature materials such as annealing implantation induced damage in compound semiconductors.Short time heating of the sample is achieved by its contact with a quartz plate heated by photons from a CW CO2 laser. The quartz serves both as an absorbing medium for the radiation and as a proximity cap. Steady state temperature can be obtained by the simultaneous heating of the sample by the laser and its cooling by a jet of N2 gas.The present technique, when applied to ion implanted InSb (TA<450°C, t=10 seconds), leads to removal of the implantation damage which is comparable to that obtained by furnace or flash lamp (Heatpulse™)annealing.


1997 ◽  
Vol 470 ◽  
Author(s):  
V. Vedagarbha ◽  
R. Singh ◽  
D. Ratakonda ◽  
L. Vedula ◽  
A. Rohatgi ◽  
...  

ABSTRACTRapid thermal processing is fast emerging as a vital low thermal budget processing technique. Use of photons of wavelengths less than 800 nm in conjunction with infrared and visible photons in RTP resulted in the reduction of microscopic defects and processing time. Screen printed back surface field (BSF) contacts and ohmic contacts which are an integral part of solar cells were processed and Schottky barrier diodes were made. Cycle time was reduced from 172 see's to 108 see's in the case of back surface field contacts and from 162 see's to 122 see's for the ohmic contacts. The Schottky diodes were characterized for electrical data. The structural properties of the metal silicon interface have direct correlation with the electrical properties of the device.


2019 ◽  
Vol 8 (1) ◽  
pp. P35-P40 ◽  
Author(s):  
Haruo Sudo ◽  
Kozo Nakamura ◽  
Susumu Maeda ◽  
Hideyuki Okamura ◽  
Koji Izunome ◽  
...  

1994 ◽  
Vol 141 (11) ◽  
pp. 3200-3209 ◽  
Author(s):  
Charles D. Schaper ◽  
Mehrdad M. Moslehi ◽  
Krishna C. Saraswat ◽  
Thomas Kailath

1990 ◽  
Vol 29 (Part 2, No. 1) ◽  
pp. L137-L140 ◽  
Author(s):  
Hisashi Fukuda ◽  
Akira Uchiyama ◽  
Takahisa Hayashi ◽  
Toshiyuki Iwabuchi ◽  
Seigo Ohno

1987 ◽  
Vol 92 ◽  
Author(s):  
A. Usami ◽  
Y. Tokuda ◽  
H. Shiraki ◽  
H. Ueda ◽  
T. Wada ◽  
...  

ABSTRACTRapid thermal processing using halogen lamps was applied to the diffusion of Zn into GaAs0.6 P0.4:Te from Zn-doped oxide films. The Zn diffusion coefficient of the rapid thermal diffused (RTD) samples at 800°C for 6 s was about two orders of magnitude higher than that of the conventional furnace diffused samples at 800°C for 60 min. The enhanced diffusion of Zn by RTD may be ascribed to the stress field due to the difference in the thermal expansion coefficient between the doped oxide films and GaAs0.6P0.4 materials, and due to the temperature gradient in GaAs0.6P0 4 materials. The Zn diffusion coefficient at Zn concentration of 1.0 × l018 cm−3 was 3.6 × 10−11, 3.1 × 10−11 and 5.0 × 10−12 cm2 /s for the RTD samples at 950°C for 6 s from Zn-, (Zn,Ga)- and (Zn,P)-doped oxide films, respectively. This suggests that Zn diffusibility was controlled by the P in the doped oxide films.


2000 ◽  
Vol 361-362 ◽  
pp. 454-457 ◽  
Author(s):  
O. Schenker ◽  
M. Klenk ◽  
E. Bucher

Sign in / Sign up

Export Citation Format

Share Document