An evaluation of synergistic interactions between feruloyl esterases and xylanases during the hydrolysis of various pre-treated agricultural residues

2021 ◽  
Author(s):  
◽  
Lithalethu Mkabayi

Agricultural residues are readily available and inexpensive renewable resources that can be used as raw materials for the production of value-added chemicals. The application of enzymes to facilitate the degradation of agricultural residues has long been considered the most environmentally friendly strategy for converting this material into good quality value-added chemicals. However, agricultural residues are typically lignocellulosic in composition and recalcitrant to enzymatic hydrolysis. Due to this recalcitrant nature, the complete degradation of biomass residues requires the synergistic action of a broad range of enzymes. The development and optimisation of synergistic enzyme cocktails is an effective approach for achieving high hydrolysis efficiency of lignocellulosic biomass. The aim of the current study was to evaluate the synergistic interactions between two termite metagenome-derived feruloyl esterases (FAE6 and FAE5) and endo-xylanases for the production of hydroxycinnamic acids and xylo-oligosaccharides (XOS) from model substrates, and untreated and pre-treated agricultural residues. Firstly, the two fae genes were heterologously expressed in Escherichia coli, and the recombinant enzymes were purified to homogeneity. The biochemical properties of the purified recombinant FAEs and xylanases (XT6 and Xyn11) were then assessed to determine the factors which influenced their activities and to select suitable operating conditions for synergy studies. An optimal protein loading ratio of xylanases to FAEs required to maximise the release of both reducing sugar and ferulic acid (FA) was established using 0.5% (w/v) insoluble wheat arabinoxylan (a model substrate). The enzyme combination of 66% xylanase and 33% FAE (on a protein loading basis) produced the highest amounts of reducing sugars and FA. The enzyme combination of XT6 (GH10 xylanase) and FAE5 or FAE6 liberated the highest amount of FA while a combination of Xyn11 (GH11 xylanase) and FAE5 or FAE6 produced the highest reducing sugar content. The synergistic interactions which were established between the xylanases and FAEs were further investigated using agricultural residues (corn cobs, rice straw and sugarcane bagasse). The three substrates were subjected to hydrothermal and dilute acid pre-treatment prior to synergy studies. It is generally known that, during pre-treatment, many compounds can be produced which may influence enzymatic hydrolysis. The effects of these by-products were assessed and it was found that lignin and its degradation products were the most inhibitory to the FAEs. The optimised enzyme cocktail was then applied to 1% (w/v) of untreated and pre-treated substrates for the efficient production of XOS and hydroxycinnamic acids. A significant improvement in xylanase substrate degradation was observed, especially with the combination of 66% Xyn11 and 33% FAE6 which displayed an improvement in reducing sugars of approximately 1.9-fold and 3.4-fold for hydrothermal and acid pre-treated corn cobs (compared to when Xyn11 was used alone), respectively. The study demonstrated that pre-treatment substantially enhanced the enzymatic hydrolysis of corn cobs and rice straw. Analysis of the hydrolysate product profiles revealed that the optimised enzyme cocktail displayed great potential for releasing XOS with a low degree of polymerisation. In conclusion, this study provided significant insights into the mechanism of synergistic interactions between xylanases and metagenome-derived FAEs during the hydrolysis of various substrates. The study also demonstrated that optimised enzyme cocktails combined with low severity pre-treatment can facilitate the potential use of xylan-rich lignocellulosic biomass for the production of valuable products in the future.

2018 ◽  
Author(s):  
◽  
Samkelo Malgas

Currently, there is a growing interest in utilising hardwoods as feedstocks for bioethanol production due to the vast advantages they have over other feedstocks for fermentable sugar production. In this study, two selected hardwoods, Acacia and Populus spp., were subjected to two pre-treatment processes (Sodium chlorite delignification and Steam explosion) and compared with respect to how these pre-treatments affect their enzymatic saccharification. Hardwoods were selected for this study, because hardwoods are easier to delignify when compared to softwoods, and therefore their polysaccharides are more easily accessible by enzymes for the purpose of producing fermentable sugars. Currently available commercial enzyme mixtures have been developed for optimal hydrolysis of acid-pre-treated corn stover and are therefore not optimal for saccharification of pre-treated hardwoods. In this work, we attempted the empirical design of a hardwood specific enzyme cocktail, HoloMix. Firstly, a cellulolytic core-set, CelMix (in a ratio of Egl 68%: Cel7A 17%: Cel6A 6%: Bgl1 9%), for the optimal release of glucose, and a xylanolytic core-set, XynMix (in a ratio of Xyn2A 60%: XT6 20%: AguA 11%: SXA 9%), for the optimal release of xylose, were formulated using an empirical enzyme ratio approach after biochemically characterising these enzymes. As it is well ̶ known that biomass pre-treatment may result in the generation of compounds that hamper enzymatic hydrolysis and microbial fermentation, the effects of these compounds on CelMix and XynMix were evaluated. Using the optimised CelMix and XynMix cocktails, a HoloMix cocktail was established for optimal reducing sugar, glucose and xylose release from the various pre-treated hardwoods. For delignified biomass, the optimized HoloMix consisted of CelMix to XynMix at 75% to 25% protein loading, while for the untreated and steam exploded biomass the HoloMix consisted of CelMix to XynMix at 93.75% to 6.25% protein loading. Sugar release by the HoloMix at a loading of 27.5 mg protein/g of biomass (or 55 mg protein/g of glucan) after 24 h gave 70-100% sugar yield. Treatment of the hardwoods with a laccase from Agaricus bisporus, especially wood biomass with a higher proportion of lignin, significantly improved saccharification by the formulated HoloMix enzyme cocktails. This study provided insights into the enzymatic hydrolysis of various pre-treated hardwood substrates and assessed whether the same lignocellulolytic cocktail can be used to efficiently hydrolyse different hardwood species. The present study also demonstrated that the hydrolysis efficiency of the optimised HoloMix was comparable to (if not better) than commercial enzyme preparations during hardwood biomass saccharification.


2017 ◽  
Vol 96 ◽  
pp. 172-179 ◽  
Author(s):  
Alessandra Procentese ◽  
Francesca Raganati ◽  
Giuseppe Olivieri ◽  
Maria Elena Russo ◽  
Antonio Marzocchella

2018 ◽  
Vol 37 (2) ◽  
pp. 149-156 ◽  
Author(s):  
C. Marzo ◽  
A.B. Díaz ◽  
I. Caro ◽  
A. Blandino

Nowadays, significant amounts of agro-industrial wastes are discarded by industries; however, they represent interesting raw materials for the production of high-added value products. In this regard, orange peels (ORA) and exhausted sugar beet cossettes (ESBC) have turned out to be promising raw materials for hydrolytic enzymes production by solid state fermentation (SSF) and also a source of sugars which could be fermented to different high-added value products. The maximum activities of xylanase and exo-polygalacturonase (exo-PG) measured in the enzymatic extracts obtained after the SSF of ORA were 31,000 U·kg-1 and 17,600 U·kg-1, respectively; while for ESBC the maximum values reached were 35,000 U·kg-1 and 28,000 U·kg-1, respectively. The enzymatic extracts obtained in the SSF experiments were also employed for the hydrolysis of ORA and ESBC. Furthermore, it was found that extracts obtained from SSF of ORA, supplemented with commercial cellulase, were more efficient for the hydrolysis of ORA and ESBC than a commercial enzyme cocktail typically used for this purpose. In this case, maximum reducing sugars concentrations of 57 and 47 g·L-1 were measured after the enzymatic hydrolysis of ESBC and ORA, respectively.


2008 ◽  
Vol 42 (2) ◽  
pp. 160-166 ◽  
Author(s):  
Encarnación Ruiz ◽  
Cristóbal Cara ◽  
Paloma Manzanares ◽  
Mercedes Ballesteros ◽  
Eulogio Castro

Sign in / Sign up

Export Citation Format

Share Document