Valorization of agro-industrial wastes to produce hydrolytic enzymes by fungal solid-state fermentation

2018 ◽  
Vol 37 (2) ◽  
pp. 149-156 ◽  
Author(s):  
C. Marzo ◽  
A.B. Díaz ◽  
I. Caro ◽  
A. Blandino

Nowadays, significant amounts of agro-industrial wastes are discarded by industries; however, they represent interesting raw materials for the production of high-added value products. In this regard, orange peels (ORA) and exhausted sugar beet cossettes (ESBC) have turned out to be promising raw materials for hydrolytic enzymes production by solid state fermentation (SSF) and also a source of sugars which could be fermented to different high-added value products. The maximum activities of xylanase and exo-polygalacturonase (exo-PG) measured in the enzymatic extracts obtained after the SSF of ORA were 31,000 U·kg-1 and 17,600 U·kg-1, respectively; while for ESBC the maximum values reached were 35,000 U·kg-1 and 28,000 U·kg-1, respectively. The enzymatic extracts obtained in the SSF experiments were also employed for the hydrolysis of ORA and ESBC. Furthermore, it was found that extracts obtained from SSF of ORA, supplemented with commercial cellulase, were more efficient for the hydrolysis of ORA and ESBC than a commercial enzyme cocktail typically used for this purpose. In this case, maximum reducing sugars concentrations of 57 and 47 g·L-1 were measured after the enzymatic hydrolysis of ESBC and ORA, respectively.

2019 ◽  
Vol 6 (14) ◽  
pp. 599-604
Author(s):  
Daniel Elijah Ngbede ◽  
Usman Ahmadu ◽  
Mordecai Gana ◽  
Friday Attah

Agro and industrial wastes are rich in bioactive compounds. These wastes can be used as an alternate source for the production of different valuable products as the raw material in various industries. The use of agro-industrial wastes as raw materials can help to reduce the production cost and also reduce the pollution load from the environment. Agro-industrial wastes are used for manufacturing of enzymes, biofertilizer, biofuel, antibiotics, and other chemicals through solid state fermentation (SSF). A variety of microorganisms are used for the production of these valuable products through SSF processes. This reviewed work was aimed at bioconversion of agricultural and industrial wastes to generate valuable products.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 227 ◽  
Author(s):  
Camila Favaro ◽  
Ilton Baraldi ◽  
Fernanda Casciatori ◽  
Cristiane Farinas

Soluble coffee offers the combined benefits of high added value and practicality for its consumers. The hydrolysis of coffee polysaccharides by the biochemical route, using enzymes, is an eco-friendly and sustainable way to improve the quality of this product, while contributing to the implementation of industrial processes that have lower energy requirements and can reduce environmental impacts. This work describes the production of hydrolytic enzymes by solid-state fermentation (SSF), cultivating filamentous fungi on waste from the coffee industry, followed by their application in the hydrolysis of waste coffee polysaccharides from soluble coffee processing. Different substrate compositions were studied, an ideal microorganism was selected, and the fermentation conditions were optimized. Cultivations for enzymes production were carried out in flasks and in a packed-bed bioreactor. Higher enzyme yield was achieved in the bioreactor, due to better aeration of the substrate. The best β-mannanase production results were found for a substrate composed of a mixture of coffee waste and wheat bran (1:1 w/w), using Aspergillus niger F12. The enzymatic extract proved to be very stable for 24 h, at 50 °C, and was able to hydrolyze a considerable amount of the carbohydrates in the coffee. The addition of a commercial cellulase cocktail to the crude extract increased the hydrolysis yield by 56%. The production of β-mannanase by SSF and its application in the hydrolysis of coffee polysaccharides showed promise for improving soluble coffee processing, offering an attractive way to assist in closing the loops in the coffee industry and creating a circular economy.


2014 ◽  
Vol 174 (5) ◽  
pp. 1859-1872 ◽  
Author(s):  
Nayeli Ávila-Cisneros ◽  
Susana Velasco-Lozano ◽  
Sergio Huerta-Ochoa ◽  
Jesús Córdova-López ◽  
Miquel Gimeno ◽  
...  

2013 ◽  
Vol 14 (1) ◽  
pp. 67-74
Author(s):  
Bina Gautam ◽  
Tika B Karki ◽  
Om Prakash Panta

Amylase is an amylolytic enzyme used in food industry which is generally produced by Aspergillus spp. under solid state fermentation. The present study is concerned with the isolation, screening and selection of suitable strains of Aspergillus spp. and optimization of cultural conditions for the biosynthesis of amylase. Rice and wheat brans were used as substrates which are readily available inexpensive raw materials for amylase production. From 85 samples of rice and wheat grains, 55 colonies obtained on potato dextrose agar (PDA) were suspected to be Aspergillus oryzae and only 35 colonies possessed the morphological characteristics similar to that of A. oryzae indicating the isolates were most likely the strains of A. oryzae. Of all the fungal isolates of Aspergillus spps., Asp.31 gave maximum production of amylase (720.782 IUgds-1) in solid state fermentation media. This strain was selected as a parental strain for optimization for cultural conditions. The obtained data were analyzed using SPSS- 11.5 program. Of all the substrates (rice bran, wheat bran and their mixture), rice bran was the best for producing amylase of highest activity 611.614 IUgds-1.The highest enzyme activity of 698.749 IUgds-1 was observed at 50% initial moisture level of the substrate. The optimum temperature was 25°C for producing the crude amylase enzyme with amylase activity of 577.757 IUgds-1. Nepal Journal of Science and Technology Vol. 14, No. 1 (2013) 67-74 DOI: http://dx.doi.org/10.3126/njst.v14i1.8924


2018 ◽  
Vol 22 (2) ◽  
pp. 111
Author(s):  
Alfi Asben ◽  
Deivy Andhika Permata

Angka pigment is one of food colorants that safe to used. It can be produced by subtrate that contain of sago hampas. The objective of the research was to get the appropriate of sago hampas particle size to produce the angkak pigment. The steps to produce of angkak pigment were (a) Preparation of raw materials (sago hampas and rice flour substrate with comparison 1:1 (12.5 : 12.5). This research used  three treatments of sago hampas particle size (40-60 mesh, 60-80 mesh, and >80 mesh) with 3 replications, (b) Preparation of Monascus purpureus culture, (c) Solid state fermentation to produce angkak pigment using M. purpureus. The results of the research showed that the substrate with hampas sago particle size 40-60 mesh produced  the best angkak pigment. The angkak pigment obtain the highest color intensity on λ 400 nm, λ 470 nm, λ 500 nm were 6004, 5110 and 3650 respectively, the highest used starch, antioxidant, toxicity, lovastatin and spore of  M.  purpureus were 11.07%, 45.95%, 1719.86 (LC50), 79 ppm, and 3.4 x 103 CPU/g respectively.


2020 ◽  
pp. 405-414
Author(s):  
Veronika Valentinovna Tarnopol’skaya ◽  
Tat'yana Vasil'yevna Ryazanova ◽  
Natal'ya Yur'yevna Demidenko ◽  
Oksana Nikolayevna Eryomenko

A technology for pilot production of feed products via microbiological conversion of plant raw materials (mixed substrate of pine sawdust and vegetative part of Jerusalem artichoke) by Plerotus ostreatus PO-4.1 and Pleurotus djamor PD-3.2 strains is developed. The technology includes hydrodynamic activation of substrate at the seed stock production stage. The overall technology includes three key stages: submerged fermentation of pure cultures of production strains; submerged-solid phase fermentation of hydrodynamicly activated plant raw materials for seed stock production; solid-state fermentation of mechanically ground plant substrate for feed products production. A successful approbation of submerged-solid state fermentation of production strains on media containing 3% of hydrodynamicly activated raw materials allowed for obtaining seed stock with 14.5 g/l yield of submerged mycelium biomass fully adopted for this type of substrate. Further use of this seed stock biomass at the solid state fermentation stage makes the overall process duration three times shorter compared to existing technologies for direct wood waste bioconversion. The pilot plant results show valuable practicability of plant raw material hydrodynamic activation with the purpose of enhancing its bioaccessibility with consequent increase in degree of microbiological conversion. The product of bioconversion contains 14–16% of protein, biofiber, vitamins and minerals and could be considered for successful use as feed by agricultural enterprises.


Sign in / Sign up

Export Citation Format

Share Document