scholarly journals River Discharge Projection under Climate Change in the Chao Phraya River Basin, Thailand, Using the MRI-GCM3.1S Dataset

2012 ◽  
Vol 90A (0) ◽  
pp. 137-150 ◽  
Author(s):  
P. B. HUNUKUMBURA ◽  
Yasuto TACHIKAWA
2008 ◽  
Vol 21 (8) ◽  
pp. 1790-1806 ◽  
Author(s):  
Qiuhong Tang ◽  
Taikan Oki ◽  
Shinjiro Kanae ◽  
Heping Hu

Abstract A distributed biosphere hydrological (DBH) model system was used to explore the internal relations among the climate system, human society, and the hydrological system in the Yellow River basin, and to interpret possible mechanisms for observed changes in Yellow River streamflow from 1960 to 2000. Several scenarios were evaluated to elucidate the hydrological response to climate system, land cover, and irrigation. The results show that climate change is the dominant cause of annual streamflow changes in the upper and middle reaches, but human activities dominate annual streamflow changes in the lower reaches of the Yellow River basin. The annual river discharge at the mouth is affected by climate change and by human activities in nearly equal proportion. The linear component of climate change contributes to the observed annual streamflow decrease, but changes in the climate temporal pattern have a larger impact on annual river discharge than does the linear component of climate change. Low flow is more significantly affected by irrigation withdrawals than by climate change. Reservoirs induce more diversions for irrigation, while at the same time the results demonstrate that the reservoirs may help to maintain environmental flows and counter what otherwise would be more serious reductions in low flows.


2014 ◽  
Vol 8 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Satoshi Watanabe ◽  
Yukiko Hirabayashi ◽  
Shunji Kotsuki ◽  
Naota Hanasaki ◽  
Kenji Tanaka ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 1951 ◽  
Author(s):  
Til Prasad Pangali Sharma ◽  
Jiahua Zhang ◽  
Narendra Raj Khanal ◽  
Foyez Ahmed Prodhan ◽  
Basanta Paudel ◽  
...  

The Himalayan region, a major source of fresh water, is recognized as a water tower of the world. Many perennial rivers originate from Nepal Himalaya, located in the central part of the Himalayan region. Snowmelt water is essential freshwater for living, whereas it poses flood disaster potential, which is a major challenge for sustainable development. Climate change also largely affects snowmelt hydrology. Therefore, river discharge measurement requires crucial attention in the face of climate change, particularly in the Himalayan region. The snowmelt runoff model (SRM) is a frequently used method to measure river discharge in snow-fed mountain river basins. This study attempts to investigate snowmelt contribution in the overall discharge of the Budhi Gandaki River Basin (BGRB) using satellite remote sensing data products through the application of the SRM model. The model outputs were validated based on station measured river discharge data. The results show that SRM performed well in the study basin with a coefficient of determination (R2) >0.880. Moreover, this study found that the moderate resolution imaging spectroradiometer (MODIS) snow cover data and European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological datasets are highly applicable to the SRM in the Himalayan region. The study also shows that snow days have slightly decreased in the last three years, hence snowmelt contribution in overall discharge has decreased slightly in the study area. Finally, this study concludes that MOD10A2 and ECMWF precipitation and two-meter temperature products are highly applicable to measure snowmelt and associated discharge through SRM in the BGRB. Moreover, it also helps with proper freshwater planning, efficient use of winter water flow, and mitigating and preventive measures for the flood disaster.


2019 ◽  
Vol 34 (S1) ◽  
pp. 367-380
Author(s):  
Dao Nguyen Khoi ◽  
Van Thinh Nguyen ◽  
Truong Thao Sam ◽  
Nguyen Ky Phung ◽  
Nguyen Thi Bay

2020 ◽  
Vol 20 (7) ◽  
pp. 2977-2996 ◽  
Author(s):  
Ahmad Sharafati ◽  
Elnaz Pezeshki ◽  
Shamsuddin Shahid ◽  
Davide Motta

Climate ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 102
Author(s):  
Noor Ahmad Akhundzadah ◽  
Salim Soltani ◽  
Valentin Aich

The Kunduz River is one of the main tributaries of the Amu Darya Basin in North Afghanistan. Many communities live in the Kunduz River Basin (KRB), and its water resources have been the basis of their livelihoods for many generations. This study investigates climate change impacts on the KRB catchment. Rare station data are, for the first time, used to analyze systematic trends in temperature, precipitation, and river discharge over the past few decades, while using Mann–Kendall and Theil–Sen trend statistics. The trends show that the hydrology of the basin changed significantly over the last decades. A comparison of landcover data of the river basin from 1992 and 2019 shows significant changes that have additional impact on the basin hydrology, which are used to interpret the trend analysis. There is considerable uncertainty due to the data scarcity and gaps in the data, but all results indicate a strong tendency towards drier conditions. An extreme warming trend, partly above 2 °C since the 1960s in combination with a dramatic precipitation decrease by more than −30% lead to a strong decrease in river discharge. The increasing glacier melt compensates the decreases and leads to an increase in runoff only in the highland parts of the upper catchment. The reduction of water availability and the additional stress on the land leads to a strong increase of barren land and a reduction of vegetation cover. The detected trends and changes in the basin hydrology demand an active management of the already scarce water resources in order to sustain water supply for agriculture and ecosystems in the KRB.


2013 ◽  
Vol 7 (2) ◽  
pp. 36-41 ◽  
Author(s):  
Adisorn Champathong ◽  
Daisuke Komori ◽  
Masashi Kiguchi ◽  
Thada Sukhapunnaphan ◽  
Taikan Oki ◽  
...  

Water ◽  
2015 ◽  
Vol 7 (12) ◽  
pp. 6892-6909 ◽  
Author(s):  
Mayzonee Ligaray ◽  
Hanna Kim ◽  
Suthipong Sthiannopkao ◽  
Seungwon Lee ◽  
Kyung Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document