scholarly journals Future Changes in the Baiu Rain Band Projected by a 20-km Mesh Global Atmospheric Model: Sea Surface Temperature Dependence

SOLA ◽  
2008 ◽  
Vol 4 ◽  
pp. 85-88 ◽  
Author(s):  
Shoji Kusunoki ◽  
Ryo Mizuta
2020 ◽  
Author(s):  
Martin Vodopivec ◽  
Matjaž Ličer

<p>When modelling coastal areas in high spatial resolution, it is also essential to obtain atmospheric forcing with suitably fine grid. The complex coastline and coastal orography exert strong influence on atmospheric fields, wind in particular, and the east Adriatic coast with numerous islands and coastal mountain ridges is a fine example. We decided to use a high resolution COSMO atmospheric reanalysis for our long term ROMS_AGRIF hindcasts, but in our initial experiments we found out that the atmospheric model significantly underestimates the short wave flux over the Mediterranean Sea, probably due to overestimation of high clouds formation and erroneous sea surface temperature used as a boundary condition. We explore different atmospheric models and different combinations of fluxes - direct, diffuse and clear sky solar radiation and combinations of fluxes from different atmospheric models (eg. ERA5). We compare them with solar irradiance observations at a coastal meteorological station and run year-long simulations to compare model sea surface temperature (SST) with satellite observations obtained from Coprenicus Marine Environment Monitoring Service.</p>


2005 ◽  
Vol 18 (24) ◽  
pp. 5330-5343 ◽  
Author(s):  
Wassila M. Thiaw ◽  
Kingtse C. Mo

Abstract The ensemble rainfall forecasts over the Sahel for July–September (JAS) from the NCEP Coupled Forecast System (CFS) were evaluated for the period 1981–2002. The comparison with the gauge-based precipitation analysis indicates that the predicted Sahel rainfall is light and exhibits little interannual variability. The rain belt is shifted about 4° southward. One major source of rainfall errors comes from the erroneous sea surface temperature (SST) forecasts. The systematic SST error pattern has positive errors in the North Pacific and the North Atlantic and negative errors in the tropical Pacific and the southern oceans. It resembles the decadal SST mode, which has a significant influence on rainfall over the Sahel. Because the systematic SST errors were not corrected during the forecasts, persistent errors serve as an additional forcing to the atmosphere. The second source of error is from the soil moisture feedback, which contributes to the southward shift of rainfall and dryness over West Africa. This was demonstrated by the comparison between simulations (SIMs) and the Atmospheric Model Intercomparison Project (AMIP) run. Both are forced with observed SSTs. The SIMs initialized at the end of June have realistic soil moisture and do not show the southward shift of rainfall. The AMIP, which predicts soil moisture, maintains the dryness through the summer over the Sahel. For AMIP, the decreased rainfall is contributed by the decreased evaporation (E) due to the dry soil and the shift of the large temperature gradients southward. In response, the African easterly jet (AEJ) shifts southward. Since this jet is the primary source of energy for the African waves and their associated mesoscale convective systems, these too shift southward. This negative feedback contributes to increased dryness over the Sahel.


Ocean Science ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. 1071-1084 ◽  
Author(s):  
E. de Boisséson ◽  
M. A. Balmaseda ◽  
F. Vitart ◽  
K. Mogensen

Abstract. This paper explores the sensitivity of hindcasts of the Madden Julian Oscillation (MJO) to the use of different sea surface temperture (SST) products as lower boundary conditions in the European Centre for Medium-range Weather Forecasts (ECMWF) atmospheric model. Three sets of monthly hindcast experiments are conducted, starting from initial conditions from the ERA interim reanalysis. First, as a reference, the atmosphere is forced by the SST used to produce ERA interim. In the second and third experiments, the SST is switched to the OSTIA (Operational Sea Surface Temperature and Sea-Ice Analysis) and the AVHRR-only (Advanced Very High Resolution Radiometer) reanalyses, respectively. Tests on the temporal resolution of the SST show that monthly fields are not optimal, while weekly and daily resolutions provide similar MJO scores. When using either OSTIA or AVHRR, the propagation of the MJO is degraded and the resulting scores are lower than in the reference experiment. Further experiments show that this loss of skill cannot be attributed to either the difference in mean state or temporal variability between the SST products. Additional diagnostics show that the phase relationship between either OSTIA or AVHRR SST and the MJO convection is distorted with respect to satellite observations and the ERA interim reanalysis. This distortion is expected to impact the MJO hindcasts, leading to a relative loss of forecast skill. A realistic representation of ocean–atmosphere interactions is thus needed for MJO hindcasts, but not all SST products – though accurate for other purposes – fulfill this requirement.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Eric Samakinwa ◽  
Veronika Valler ◽  
Ralf Hand ◽  
Raphael Neukom ◽  
Juan José Gómez-Navarro ◽  
...  

AbstractThis paper describes a global monthly gridded Sea Surface Temperature (SST) and Sea Ice Concentration (SIC) dataset for the period 1000–1849, which can be used as boundary conditions for atmospheric model simulations. The reconstruction is based on existing coarse-resolution annual temperature ensemble reconstructions, which are then augmented with intra-annual and sub-grid scale variability. The intra-annual component of HadISST.2.0 and oceanic indices estimated from the reconstructed annual mean are used to develop grid-based linear regressions in a monthly stratified approach. Similarly, we reconstruct SIC using analog resampling of HadISST.2.0 SIC (1941–2000), for both hemispheres. Analogs are pooled in four seasons, comprising of 3-months each. The best analogs are selected based on the correlation between each member of the reconstructed SST and its target. For the period 1780 to 1849, We assimilate historical observations of SST and night-time marine air temperature from the ICOADS dataset into our reconstruction using an offline Ensemble Kalman Filter approach. The resulting dataset is physically consistent with information from models, proxies, and observations.


1999 ◽  
Vol 17 (4) ◽  
pp. 566-576 ◽  
Author(s):  
P. Josse ◽  
G. Caniaux ◽  
H. Giordani ◽  
S. Planton

Abstract. A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation.Key words. Oceanography: physical (air · sea interac- tion; eddies and mesoscale processes). Meteorology and atmospheric dynamics (ocean · atmosphere interactions)


2014 ◽  
Vol 27 (22) ◽  
pp. 8422-8443 ◽  
Author(s):  
Hyodae Seo ◽  
Aneesh C. Subramanian ◽  
Arthur J. Miller ◽  
Nicholas R. Cavanaugh

Abstract This study quantifies, from a systematic set of regional ocean–atmosphere coupled model simulations employing various coupling intervals, the effect of subdaily sea surface temperature (SST) variability on the onset and intensity of Madden–Julian oscillation (MJO) convection in the Indian Ocean. The primary effect of diurnal SST variation (dSST) is to raise time-mean SST and latent heat flux (LH) prior to deep convection. Diurnal SST variation also strengthens the diurnal moistening of the troposphere by collocating the diurnal peak in LH with those of SST. Both effects enhance the convection such that the total precipitation amount scales quasi-linearly with preconvection dSST and time-mean SST. A column-integrated moist static energy (MSE) budget analysis confirms the critical role of diurnal SST variability in the buildup of column MSE and the strength of MJO convection via stronger time-mean LH and diurnal moistening. Two complementary atmosphere-only simulations further elucidate the role of SST conditions in the predictive skill of MJO. The atmospheric model forced with the persistent initial SST, lacking enhanced preconvection warming and moistening, produces a weaker and delayed convection than the diurnally coupled run. The atmospheric model with prescribed daily-mean SST from the coupled run, while eliminating the delayed peak, continues to exhibit weaker convection due to the lack of strong moistening on a diurnal basis. The fact that time-evolving SST with a diurnal cycle strongly influences the onset and intensity of MJO convection is consistent with previous studies that identified an improved representation of diurnal SST as a potential source of MJO predictability.


2020 ◽  
Vol 33 (2) ◽  
pp. 429-441 ◽  
Author(s):  
Chen Zhou ◽  
Jian Lu ◽  
Yongyun Hu ◽  
Mark D. Zelinka

AbstractIdealized experiments performed with the Community Atmospheric Model 5.3 indicate that the width and strength of the Hadley circulation (HC) are sensitive to the location of sea surface temperature (SST) increases. The HC edge shifts poleward in response to SST increases over the subtropical regions near and on the equatorward flank of the HC edge, and shifts equatorward in response to warming over the tropical area except for the western Pacific Ocean and Indian Ocean. The HC is strengthened in response to SST increases over the intertropical convergence zone (ITCZ) and is weakened in response to SST increases over the subsidence branch of the HC in the subtropics. Tropical SST increases off the ITCZ tend to weaken the HC in the corresponding hemisphere and strengthen the HC in the opposite hemisphere. These results could be used to explain the simulated HC changes induced by recent SST variations, and it is estimated that more than half of the SST-induced HC widening in 1980–2014 is caused by changes in the spatial pattern of SST.


Sign in / Sign up

Export Citation Format

Share Document