scholarly journals Universal Face Recognition Using Multiple Deep Learning Agent and Lazy Learning Algorithm

2021 ◽  
Vol 15 (2) ◽  
pp. 65-77
Author(s):  
Kenny Vincent ◽  
Yosi Kristian

Mainstream face recognition systems have a problem regarding the disparity of recognizing faces from different races and ethnic backgrounds. This problem is caused by the imbalances in the proportion of racial representations found in mainstream datasets. Hence, the research proposes using a multi-agent system to overcome this problem. The system employs several face recognition agents according to the number of races that are necessary to make data encodings for the classification process. The first step in implementing this system is to develop a race classifier. The number of races is arbitrary or determined differently in a caseby-case scenario. The race classifier determines which face recognition agent will try to recognize the face in the query. Each face recognition agent is trained using a different dataset according to their assigned race, so they have different parts in the system. The research utilizes lazy learning algorithms as the final classifier to accommodate a system with the constant data flow of the database. The experiment divides the data into three racial groups, which are black, Asian, and white. The experiment concludes that dividing face recognition tasks based on racial groups into several face recognition models has better performance than a single model with the same dataset with the same imbalances in racial representation. The multiple agent system achieves 85% on the Face Recognition Rate (FRR), while the single pipeline model achieves only 80.83% using the same dataset.

2018 ◽  
Vol 119 (9/10) ◽  
pp. 529-544 ◽  
Author(s):  
Ihab Zaqout ◽  
Mones Al-Hanjori

Purpose The face recognition problem has a long history and a significant practical perspective and one of the practical applications of the theory of pattern recognition, to automatically localize the face in the image and, if necessary, identify the person in the face. Interests in the procedures underlying the process of localization and individual’s recognition are quite significant in connection with the variety of their practical application in such areas as security systems, verification, forensic expertise, teleconferences, computer games, etc. This paper aims to recognize facial images efficiently. An averaged-feature based technique is proposed to reduce the dimensions of the multi-expression facial features. The classifier model is generated using a supervised learning algorithm called a back-propagation neural network (BPNN), implemented on a MatLab R2017. The recognition rate and accuracy of the proposed methodology is comparable with other methods such as the principle component analysis and linear discriminant analysis with the same data set. In total, 150 faces subjects are selected from the Olivetti Research Laboratory (ORL) data set, resulting 95.6 and 85 per cent recognition rate and accuracy, respectively, and 165 faces subjects from the Yale data set, resulting 95.5 and 84.4 per cent recognition rate and accuracy, respectively. Design/methodology/approach Averaged-feature based approach (dimension reduction) and BPNN (generate supervised classifier). Findings The recognition rate is 95.6 per cent and recognition accuracy is 85 per cent for the ORL data set, whereas the recognition rate is 95.5 per cent and recognition accuracy is 84.4 per cent for the Yale data set. Originality/value Averaged-feature based method.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Zhe-Zhou Yu ◽  
Yu-Hao Liu ◽  
Bin Li ◽  
Shu-Chao Pang ◽  
Cheng-Cheng Jia

In a real world application, we seldom get all images at one time. Considering this case, if a company hired an employee, all his images information needs to be recorded into the system; if we rerun the face recognition algorithm, it will be time consuming. To address this problem, In this paper, firstly, we proposed a novel subspace incremental method called incremental graph regularized nonnegative matrix factorization (IGNMF) algorithm which imposes manifold into incremental nonnegative matrix factorization algorithm (INMF); thus, our new algorithm is able to preserve the geometric structure in the data under incremental study framework; secondly, considering we always get many face images belonging to one person or many different people as a batch, we improved our IGNMF algorithms to Batch-IGNMF algorithms (B-IGNMF), which implements incremental study in batches. Experiments show that (1) the recognition rate of our IGNMF and B-IGNMF algorithms is close to GNMF algorithm while it runs faster than GNMF. (2) The running times of our IGNMF and B-IGNMF algorithms are close to INMF while the recognition rate outperforms INMF. (3) Comparing with other popular NMF-based face recognition incremental algorithms, our IGNMF and B-IGNMF also outperform then both the recognition rate and the running time.


2018 ◽  
Vol 9 (1) ◽  
pp. 60-77 ◽  
Author(s):  
Souhir Sghaier ◽  
Wajdi Farhat ◽  
Chokri Souani

This manuscript presents an improved system research that can detect and recognize the person in 3D space automatically and without the interaction of the people's faces. This system is based not only on a quantum computation and measurements to extract the vector features in the phase of characterization but also on learning algorithm (using SVM) to classify and recognize the person. This research presents an improved technique for automatic 3D face recognition using anthropometric proportions and measurement to detect and extract the area of interest which is unaffected by facial expression. This approach is able to treat incomplete and noisy images and reject the non-facial areas automatically. Moreover, it can deal with the presence of holes in the meshed and textured 3D image. It is also stable against small translation and rotation of the face. All the experimental tests have been done with two 3D face datasets FRAV 3D and GAVAB. Therefore, the test's results of the proposed approach are promising because they showed that it is competitive comparable to similar approaches in terms of accuracy, robustness, and flexibility. It achieves a high recognition performance rate of 95.35% for faces with neutral and non-neutral expressions for the identification and 98.36% for the authentification with GAVAB and 100% with some gallery of FRAV 3D datasets.


2012 ◽  
Vol 241-244 ◽  
pp. 1705-1709
Author(s):  
Ching Tang Hsieh ◽  
Chia Shing Hu

In this paper, a robust and efficient face recognition system based on luminance distribution by using maximum likelihood estimation is proposed. The distribution of luminance components of the face region is acquired and applied to maximum likelihood test for face matching. The experimental results showed that the proposed method has a high recognition rate and requires less computation time.


2014 ◽  
Vol 644-650 ◽  
pp. 4080-4083
Author(s):  
Ye Cai Guo ◽  
Ling Hua Zhang

In order to overcome the defects that the face recognition rate can be greatly reduced in the existing uncontrolled environments, Bayesian robust coding for face recognition based on new dictionary was proposed. In this proposed algorithm, firstly a binary image is gained by gray threshold transformation and a more clear image without some isolated points can be obtained via smoothing, secondly a new dictionary can be reconstructed via fusing the binary image with the original training dictionary, finally the test image can be classified as the existing class via Bayesian robust coding. The experimental results based on AR face database show that the proposed algorithm has higher face recognition rate comparison with RRC and RSC algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Hicham Zaaraoui ◽  
Abderrahim Saaidi ◽  
Rachid El Alami ◽  
Mustapha Abarkan

This paper proposes the use of strings as a new local descriptor for face recognition. The face image is first divided into nonoverlapping subregions from which the strings (words) are extracted using the principle of chain code algorithm and assigned into the nearest words in a dictionary of visual words (DoVW) with the Levenshtein distance (LD) by applying the bag of visual words (BoVW) paradigm. As a result, each region is represented by a histogram of dictionary words. The histograms are then assembled as a face descriptor. Our methodology depends on the path pursued from a starting pixel and do not require a model as the other approaches from the literature. Therefore, the information of the local and global properties of an object is obtained. The recognition is performed by using the nearest neighbor classifier with the Hellinger distance (HD) as a comparison between feature vectors. The experimental results on the ORL and Yale databases demonstrate the efficiency of the proposed approach in terms of preserving information and recognition rate compared to the existing face recognition methods.


2013 ◽  
Vol 278-280 ◽  
pp. 1211-1214
Author(s):  
Jun Ying Zeng ◽  
Jun Ying Gan ◽  
Yi Kui Zhai

A fast sparse representation face recognition algorithm based on Gabor dictionary and SL0 norm is proposed in this paper. The Gabor filters, which could effectively extract local directional features of the image at multiple scales, are less sensitive to variations of illumination, expression and camouflage. SL0 algorithm, with the advantages of calculation speed,require fewer measurement values by continuously differentiable function approximation L0 norm and reconstructed sparse signal by minimizing the approximate L0 norm. The algorithm obtain the local feature face by extracting the Gabor face feature, reduce the dimensions by principal component analysis, fast sparse classify by the SL0 norm. Under camouflage condition, The algorithm block the Gabor facial feature and improve the speed of formation of the Gabor dictionary. The experimental results on AR face database show that the proposed algorithm can improve recognition speed and recognition rate to some extent and can generalize well to the face recognition, even with a few training image per class.


2012 ◽  
Vol 224 ◽  
pp. 485-488
Author(s):  
Fei Li ◽  
Yuan Yuan Wang

Abstract: In order to solve the easily copied problem of images in face recognition software, an algorithm combining the image feature with digital watermark is presented in this paper. As watermark information, image feature of the adjacent blocks are embedded to the face image. And primitive face images are not needed when recovering the watermark. So face image integrity can be well confirmed, and the algorithm can detect whether the face image is the original one and identify whether the face image is attacked by malicious aim-such as tampering, replacing or illegally adding. Experimental results show that the algorithm with good invisibility and excellent robustness has no interference on face recognition rate, and it can position the specific tampered location of human face image.


Sign in / Sign up

Export Citation Format

Share Document