scholarly journals CHARACTERIZATION OF CeO2 DOPED MgAl2O4 PREPARED BY THE CHELATING AGENTS-ASSISTED IMPREGNATION METHOD

Química Nova ◽  
2018 ◽  
Author(s):  
Alejandra Villagrán-Olivares ◽  
Mariana Barroso ◽  
Maria Abello
1990 ◽  
Vol 59 (1) ◽  
pp. 45-58 ◽  
Author(s):  
M. Shimokawabe ◽  
H. Asakawa ◽  
N. Takezawa
Keyword(s):  

RSC Advances ◽  
2017 ◽  
Vol 7 (69) ◽  
pp. 43789-43797 ◽  
Author(s):  
Hongcheng Ruan ◽  
Maiko Nishibori ◽  
Tomoki Uchiyama ◽  
Kakeru Ninomiya ◽  
Kazutaka Kamitani ◽  
...  

A HZSM-5 supported Ag nanoparticles catalyst, which has a Si/Al ratio of 1500, is synthesized by a simple impregnation method for soot oxidation.


Author(s):  
Norazimah Harun ◽  
Jolius Gimbun ◽  
Mohammad Tazli Azizan ◽  
Sumaiya Zainal Abidin

<p>The carbon dioxide (CO<sub>2</sub>) dry reforming of glycerol for syngas production is one of the promising ways to benefit the oversupply crisis of glycerol worldwide. It is an attractive process as it converts carbon dioxide, a greenhouse gas into a synthesis gas and simultaneously removed from the carbon biosphere cycle. In this study, the glycerol dry reforming was carried out using Silver (Ag) promoted Nickel (Ni) based catalysts supported on silicon oxide (SiO<sub>2</sub>) i.e. Ag-Ni/SiO<sub>2</sub>. The catalysts were prepared through wet impregnation method and characterized by using Brunauer-Emmett-Teller (BET) surface area, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Thermo Gravimetric (TGA) analysis. The experiment was conducted in a tubular reactor which condition fixed at 973 K and CO<sub>2</sub>:glycerol molar ratio of 1, under atmospheric pressure. It was found that the main gaseous products are H₂, CO and CH<sub>4</sub> with H₂:CO molar ratio &lt; 1.0. From the reaction study, Ag(5)-Ni/SiO<sub>2</sub> results in highest glycerol conversion and hydrogen yield, accounted for 32.6% and 27.4%, respectively. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 22<sup>nd</sup> January 2016; Revised: 22<sup>nd</sup> February 2016; Accepted: 23<sup>rd</sup> February 2016</em></p><strong>How to Cite</strong>: Harun, N., Gimbun, J., Azizan, M.T., Abidin S.Z. (2016). Characterization of Ag-promoted Ni/SiO<sub>2</sub> Catalysts for Syngas Production via Carbon Dioxide (CO<sub>2</sub>) Dry Reforming of Glycerol. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (2): 220-229 (doi:10.9767/bcrec.11.2.553.220-229)<p><strong>Permalink/DOI:</strong> http://dx.doi.org/10.9767/bcrec.11.2.553.220-229</p>


2009 ◽  
Vol 46 (4) ◽  
pp. 379-384 ◽  
Author(s):  
Kwang-Ho Lee ◽  
Jong-Pil Ahn ◽  
Joo-Seok Park ◽  
Yong-Seok Lee ◽  
Byung-Ha Lee

Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 347 ◽  
Author(s):  
Wenjun Liang ◽  
Xiaoyan Du ◽  
Yuxue Zhu ◽  
Sida Ren ◽  
Jian Li

A series of Pd-TiO2/Pd-Ce/TiO2 catalysts were prepared by an equal volume impregnation method. The effects of different Pd loadings on the catalytic activity of chlorobenzene (CB) were investigated, and the results showed that the activity of the 0.2%-0.3% Pd/TiO2 catalyst was optimal. The effect of Ce doping enhanced the catalytic activity of the 0.2% Pd-0.5% Ce/TiO2 catalyst. The characterization of the catalysts using BET, TEM, H2-TPR, and O2-TPD showed that the oxidation capacity was enhanced, and the catalytic oxidation efficiency was improved due to the addition of Ce. Ion chromatography and Gas Chromatography-Mass Spectrometer results showed that small amounts of dichlorobenzene (DCB) and trichlorobenzene (TCB) were formed during the decomposition of CB. The results also indicated that the calcination temperature greatly influenced the catalyst activity and a calcination temperature of 550 °C was the best. The concentration of CB affected its decomposition, but gas hourly space velocity had little effect. H2-TPR indicated strong metal–support interactions and increased dispersion of PdO in the presence of Ce. HRTEM data showed PdO with a characteristic spacing of 0.26 nm in both 0.2% Pd /TiO2 and 0.2% Pd-0.5% Ce/TiO2 catalysts. The average sizes of PdO nanoparticles in the 0.2% Pd/TiO2 and 0.2% Pd-0.5% Ce/TiO2 samples were 5.8 and 4.7 nm, respectively. The PdO particles were also deposited on the support and they were separated from each other in both catalysts.


2011 ◽  
Vol 412 ◽  
pp. 365-369
Author(s):  
Yuan Feng Huang ◽  
Wei Jun Zhang ◽  
Li Shen ◽  
Jin Hu ◽  
Zhuo Heng Li ◽  
...  

A series of Ba-Al-O NSR supports and Pt/Ba-Al-O NSR catalysts are prepared by co-precipitation and impregnation method in this work. The catalyst and the support are characterized by XRD, SEM, SBET performance testing. The structure and texture of the supports is observed and discussed. The results of SBET indicate that the supports possess relative high specific surface area (94~110 m2/g). Temperature programmed reduction is characterized by means of H2-TPR.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Saeed ◽  
Muhammad Ibrahim ◽  
Majid Muneer ◽  
Nadia Akram ◽  
Muhammad Usman ◽  
...  

Abstract Here in, we report the synthesis and characterization of ZnO–TiO2 composite as a potential photo catalyst for photo degradation of methyl orange under UV irradiation. ZnO–TiO2 with 1:1 ratio was synthesized via wet incipient impregnation method using TiO2 and Zn(NO3)2 ⋅ 6H2O as precursor material and the prepared composite was characterized by XRD, EDX and SEM. The synthesized composite was employed as photo catalyst for photo degradation of methyl orange. The photo degradation results showed that ZnO–TiO2 exhibited better catalytic performance than ZnO and TiO2 alone. The methyl orange photo degradation efficiency was determined to be 98, 75 and 60% over ZnO–TiO2, ZnO and TiO2 respectively using 50 mL solution of 100 mg/L at 40 °C for 120 min. The ZnO–TiO2 catalyzed photo degradation of methyl orange followed pseudo-first-order kinetic in terms of Langmuir–Hinshelwood mechanism.


1981 ◽  
Vol 59 (2) ◽  
pp. 83-91 ◽  
Author(s):  
R. C. McKellar ◽  
K. M. Shaw ◽  
G. D. Sprott

Crude extracts of Methanospirillum hungatei strain GP1 contained NADH and NADPH diaphorase activities. After a 483-fold purification of the NADH diaphorase the enzyme was further separated from contaminating proteins by polyacrylamide disc gel electrophoresis. Two distinct activity bands were extracted from the acrylamide, each one having oxygen, 2,6-dichlorophenoiindophenol, and cytochrome c linked activities. In these preparations NADPH could not replace NADH as electron donor. During the initial purification steps all activity was lost due to the removal of a readily released cofactor. Enzyme activity was restored by either FAD or a FAD fraction isolated from M. hungatei. Oxidase activity exhibited a broad pH optimum from 7.0 to 8.5 and apparent Km values of 26 μM for NADH and 0.2 μM for FAD. Superoxide anion, formed in the presence of oxygen, accounted for all of the NADH consumed in this reaction. The molecular weight of the diaphorase was about 117 500 by sodium dodecyl sulfate gel electrophoresis. Sulfhydryl reagents and chelating agents were inhibitory. Inactivation, which occurred during storage in phosphate buffer at 4 °C, was delayed by dithiothreitol. The isolated NADH diaphorase lacked NADPH:NAD transhydrogenase and NAD reductase activities.


1990 ◽  
Vol 267 (2) ◽  
pp. 509-515 ◽  
Author(s):  
N M Hooper ◽  
J Hryszko ◽  
A J Turner

Aminopeptidase P (EC 3.4.11.9) was solubilized from pig kidney membranes with bacterial phosphatidylinositol-specific phospholipase C (PI-PLC) and then purified by a combination of anion-exchange and hydrophobic-interaction chromatographies. Contaminating peptidase activities were removed by selective affinity chromatography. The purified enzyme was apparently homogeneous on SDS/PAGE with an Mr of 91,000. Enzymic deglycosylation revealed that aminopeptidase P is a glycoprotein, with up to 25% by weight of the protein being due to the presence of N-linked sugars. The phospholipase-solubilized aminopeptidase P was recognized by an antiserum to the cross-reacting determinant (CRD) characteristic of the glycosyl-phosphatidylinositol anchor. This recognition was abolished by mild acid treatment or deamination with HNO2, indicating that the CRD was due exclusively to the inositol 1,2-cyclic phosphate ring epitope generated by the action of PI-PLC. The activity of aminopeptidase P was inhibited by chelating agents and was stimulated by Mn2+ or Co2+ ions, confirming the metallo-enzyme nature of this peptidase. Selective inhibitors of other aminopeptidases (actinonin, amastatin, bestatin and puromycin) had little or no inhibitory effect.


Sign in / Sign up

Export Citation Format

Share Document