scholarly journals Use of Raman Spectroscopy and FT-IR to Characterize the Biochar in Yellow Oxisol of Central Amazonia

2017 ◽  
Vol 9 (5) ◽  
pp. 1996-2006
Author(s):  
Felipe J. Padilha ◽  
Marcondes S. Silva ◽  
Rodrigo S. Guimarães ◽  
Johnny C. C. Cedano ◽  
Danielle M. Oliveira ◽  
...  
2021 ◽  
Vol 22 (2) ◽  
pp. 101
Author(s):  
Bernadeta Ayu Widyaningrum ◽  
Dita Apriani ◽  
Putri Amanda ◽  
Ismadi Ismadi ◽  
Sutanto Sutanto

SYNTHESIS AND CHARACTERIZATION: COMPOSITE OF GRAPHENE OXIDE BASED PALM KERNEL SHELL WASTE WITH Fe3O4. In this study, GO-Fe3O4 were fabricated by co-precipitation technique and the graphene oxide (GO) were synthesized from an agricultural biomass, palm kernel shell, via Hummer’s method. Field Emission Scanning Electron Microscopy and Energy Dispersive Spectrum (FESEM-EDS), Fourier Transform Infra-Red (FT-IR) spectroscopy, X-Ray Diffractometer (XRD), and Raman spectroscopy were used to analysis the successful attachment of Fe3O4 onto the surface of GO. Morphology observation showed that Fe3O4 were heterogeneously deposited on the surface of GO. FT-IR spectra shows peak that incorporated to oxygenated functional groups and sharp peak at 586 cm-1 confirmed to lattice absorption of Fe3O4. The percentage of composition of GO-Fe3O4 was characterized by energy dispersive spectroscopy and the results also confirmed in XRD exhibits similar properties with JCPDS 19-0629 for magnetite more dominant than GO. From Raman spectroscopy analysis shows that 1343.82 cm-1 (D-band) and 1584.62 cm-1 (G-band) and 2698 cm-1 (2D-band) indicates GO and GO-Fe3O4 were successfully synthesized.


Author(s):  
K. Antonova ◽  
P. Byshewski ◽  
G. Zhizhin ◽  
J. Piechota ◽  
M. Marhevka

2021 ◽  
Vol 17 ◽  
Author(s):  
Irena Markovska ◽  
Dimitar Georgiev ◽  
Fila Yovkova ◽  
Miroslav Abrashev

Background: This paper proposes a technology for the production of monolayer graphene by an easy, accessible, and non-toxic method. Methods: For the preparation of graphene, a combination of chemical and physical (ultrasonic) treatment of the original graphite precursor (purity >99%) was applied. The precursor of graphite is placed in a beaker with a solution of KOH or H2SO4. The mixtures were homogenized well and sonicated for 4h. The applied ultrasound has a power of 120 W, frequency 40 kHz. Due to the effects of ultrasound, complex processes take place in the solutions, which leads to the formation of superfine graphene. Better results were obtained at samples treated with 2n H2SO4. The physicochemical properties of the resulting graphene were characterized mainly by Raman spectroscopy, FT-IR, TEM, SEM, and electrical conductivity measurements. Results: Our research was focused mainly on the field of nanotechnology, in particular on the synthesis of graphene, which could be used as a coating on electrodes for supercapacitors. In this connection, three series of samples were developed in which the pristine graphite was treated with 2n H2SO4, 4n H2SO4, and 6n H2SO4, respectively, and their electrical properties were measured. Conclusion: The obtained graphene shows electrical resistivity 2-3 times lower than that of the precursor of pure graphite.


2000 ◽  
Vol 54 (2) ◽  
pp. 225-229 ◽  
Author(s):  
C. G. Kontoyannis ◽  
N. Bouropoulos ◽  
H. H. Dauaher ◽  
C. Bouropoulos ◽  
N. V. Vagenas

Fourier transform infrared spectroscopy (FT-IR) and Fourier transform Raman spectroscopy (FT-RS) were used in order to characterize the encrusted deposits formed on a metallic thermosensitive prostatic stent. A 4 mm urinary stone entrapped within the lumen was also analyzed. Six different substances, a very rare occurrence, were detected, yielding complex spectra. Struvite (STR), hydroxyapatite (HAP), calcium oxalate monohydrate (COM), potassium urate (PU), and ammonium urate (AU) were the main components of concretion formed on the metal surface. STR and PU were detected on the 0.2 mm external surface of the stone, while the 3.8 mm core was found to be uric acid (UA). The broad and overlapping FT-IR bands of STR and COM made their identification difficult, while the detection of HAP was hindered by the presence of numerous urates bands, which, on the other hand, were used for the discrimination among UA, AU, and PU. Raman spectroscopy proved to be more sensitive to urate presence than did FT-IR, while the identification of STR, COM, and HAP was easier for FT-RS but more difficult with respect to AU and UA since all their bands, but three, coincide. A combination of the two techniques was necessary for the qualitative analysis of the encrustation and the stone.


LWT ◽  
2020 ◽  
Vol 121 ◽  
pp. 108959 ◽  
Author(s):  
Agnieszka Nawrocka ◽  
Magdalena Krekora ◽  
Zbigniew Niewiadomski ◽  
Monika Szymańska-Chargot ◽  
Ada Krawęcka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document