Simple and environment-friendly method for graphene synthesis by using ultrasound.

2021 ◽  
Vol 17 ◽  
Author(s):  
Irena Markovska ◽  
Dimitar Georgiev ◽  
Fila Yovkova ◽  
Miroslav Abrashev

Background: This paper proposes a technology for the production of monolayer graphene by an easy, accessible, and non-toxic method. Methods: For the preparation of graphene, a combination of chemical and physical (ultrasonic) treatment of the original graphite precursor (purity >99%) was applied. The precursor of graphite is placed in a beaker with a solution of KOH or H2SO4. The mixtures were homogenized well and sonicated for 4h. The applied ultrasound has a power of 120 W, frequency 40 kHz. Due to the effects of ultrasound, complex processes take place in the solutions, which leads to the formation of superfine graphene. Better results were obtained at samples treated with 2n H2SO4. The physicochemical properties of the resulting graphene were characterized mainly by Raman spectroscopy, FT-IR, TEM, SEM, and electrical conductivity measurements. Results: Our research was focused mainly on the field of nanotechnology, in particular on the synthesis of graphene, which could be used as a coating on electrodes for supercapacitors. In this connection, three series of samples were developed in which the pristine graphite was treated with 2n H2SO4, 4n H2SO4, and 6n H2SO4, respectively, and their electrical properties were measured. Conclusion: The obtained graphene shows electrical resistivity 2-3 times lower than that of the precursor of pure graphite.

Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2013 ◽  
Vol 68 (10) ◽  
pp. 1103-1107 ◽  
Author(s):  
Heike Haller ◽  
Michael Hog ◽  
Franziska Scholz ◽  
Harald Scherer ◽  
Ingo Krossing ◽  
...  

[HMIM][Br9] ([HMIM]=1-hexyl-3-methylimidazolium) has been investigated by Raman spectroscopy, single-crystal X-ray diffraction and NMR spectroscopy. Conductivity measurements show a high electrical conductivity like other polybromides.


2014 ◽  
Vol 5 ◽  
pp. 1760-1766 ◽  
Author(s):  
Wojciech Kempiński ◽  
Szymon Łoś ◽  
Mateusz Kempiński ◽  
Damian Markowski

The review of four experimental methods: X-ray diffraction, Raman spectroscopy, electron paramagnetic resonance and four-point electrical conductivity measurements is presented to characterize carbon nanoparticles. Two types of carbon nanoparticle systems are discussed: one comprising the powder of individual carbon nanoparticles and the second as a structurally interconnected nanoparticle matrix in the form of a fiber. X-ray diffraction and Raman spectroscopy reveal the atomic structure of the carbon nanoparticles and allow for observation of the changes in the quasi-graphitic ordering induced by ultrasonic irradiation and with the so-called quasi-high pressure effect under adsorption conditions. Structural changes have strong influence on the electronic properties, especially the localization of charge carriers within the nanoparticles, which can be observed with the EPR technique. This in turn can be well-correlated with the four-point electrical conductivity measurements which directly show the character of the charge carrier transport within the examined structures.


1991 ◽  
Vol 18 (3) ◽  
pp. 611-627 ◽  
Author(s):  
Marta L. Fiorotto ◽  
William J. Klish

2019 ◽  
Vol 104 (12) ◽  
pp. 1800-1805
Author(s):  
George M. Amulele ◽  
Anthony W. Lanati ◽  
Simon M. Clark

Abstract Starting with the same sample, the electrical conductivities of quartz and coesite have been measured at pressures of 1, 6, and 8.7 GPa, respectively, over a temperature range of 373–1273 K in a multi-anvil high-pressure system. Results indicate that the electrical conductivity in quartz increases with pressure as well as when the phase change from quartz to coesite occurs, while the activation enthalpy decreases with increasing pressure. Activation enthalpies of 0.89, 0.56, and 0.46 eV, were determined at 1, 6, and 8.7 GPa, respectively, giving an activation volume of –0.052 ± 0.006 cm3/mol. FTIR and composition analysis indicate that the electrical conductivities in silica polymorphs is controlled by substitution of silicon by aluminum with hydrogen charge compensation. Comparing with electrical conductivity measurements in stishovite, reported by Yoshino et al. (2014), our results fall within the aluminum and water content extremes measured in stishovite at 12 GPa. The resulting electrical conductivity model is mapped over the magnetotelluric profile obtained through the tectonically stable Northern Australian Craton. Given their relative abundances, these results imply potentially high electrical conductivities in the crust and mantle from contributions of silica polymorphs. The main results of this paper are as follows:The electrical conductivity of silica polymorphs is determined by impedance spectroscopy up to 8.7 GPa.The activation enthalpy decreases with increasing pressure indicating a negative activation volume across the silica polymorphs.The electrical conductivity results are consistent with measurements observed in stishovite at 12 GPa.


Sign in / Sign up

Export Citation Format

Share Document