scholarly journals Research on method of vibration analysis of rubber tracked vehicle based on dynamic model

2018 ◽  
Vol 6 (1) ◽  
pp. 25-34
Author(s):  
Jinzheng Zhang ◽  
Qi Wang ◽  
Qichun Jin
2013 ◽  
Vol 397-400 ◽  
pp. 369-373 ◽  
Author(s):  
Jun Yi ◽  
Shui Sheng Chen ◽  
Da Zhang You

The dynamic characteristic of automatic transmission system of tracked vehicle was thorough analyzed. The primary characteristic of torque converter was proposed by means of regression analysis of test result. The dynamic model of three-freedom planetary transmission was constituted using drive principles of planetary transmission. Thus the foundation of intelligent control and simulation system of automatic transmission of tracked vehicle was established.


Author(s):  
Jingliang Miao ◽  
Haixiang Liu

Abstract This paper proposes and analyzes a simple dynamic model of blood vessel wall. By studying the coupled vibration of blood flow and vessel wall, one can get the natural frequency of a blood vessel. The method used here is generalized calculus of variations. The results show that the flexibility of blood vessels has a greater influence on the fundamental frequency of the coupled vibration and the viscosity of blood vessel has little effect on the frequency of the coupled vibration but has a greater effect on the amplitude of the vibration. Therefore it is important to control both the viscosity and flexibility of blood vessels.


Author(s):  
Pingxin Wang ◽  
Xiaoting Rui ◽  
Jianshu Zhang ◽  
Hailong Yu

Abstract The track is mainly composed of track shoes, track pins and rubber bushing elements. In order to suppress the transversal vibration of the upper track during the smooth running process of the tracked vehicle, it is necessary to study the important factors affecting the frequency characteristics of the kinematic chain and their interaction. Unlike the conventional chain drive system, the track in the natural state has a bending rigidity due to the action of the rubber bushing. Based on the dynamic theory of axially moving beam, the differential equation of transversal vibration of a beam element is established. The entire upper track is assumed to be a continuous multi-span axially moving Euler-Bernoulli beam with an axial tension. Based on the Transfer Matrix Method of Multibody System, the transfer equation is obtained. According to the boundary conditions, the natural frequency of the system is solved. The correctness of the beam model hypothesis is verified by experiments. The results show that the first-order natural frequency of the upper track increases with the increase of the tension and the decrease of the vehicle speed. Through frequency analysis, the main excitation source for the transversal vibration of the track is the polygon effect produced by the meshing of the track and the sprocket. This study provides a theoretical basis for the vibration analysis and stability control of the upper track on the tracked vehicle.


Sign in / Sign up

Export Citation Format

Share Document