scholarly journals Impact coefficient analysis on long-span beam bridge

Author(s):  
Heng Cai ◽  
Fei Guo ◽  
Huifang Li
2012 ◽  
Vol 594-597 ◽  
pp. 1573-1576
Author(s):  
Zhi Ping Bai ◽  
Xie Dong Zhang ◽  
Cheng Lin Han

According to pile-soil function and damper boundary condition influence by Finite Element Method, taking Bao-Shu yellow river extra long-span bridge as the project object, the deformation effect of the bridge subjected to flowing and melting ice in spring was analyzed considering static and dynamical action mode. The results revealed that the deformation from this kind of action is tittly small and the bridge structure is reliable and stable. Also the deformation effect of the pier from dynamic ice action is larger than static action. While for two or more piers, the results are reverse.Then the calculation and analysis have been put into design and construction stage.


2021 ◽  
Vol 276 ◽  
pp. 02030
Author(s):  
Wang Yanan ◽  
Tang Guangwu ◽  
Liu Haiming ◽  
Wang Fujie ◽  
Chen yuan

In order to study the influence of far-field long-period seismic waves on high-pier and long-span continuous beam bridge, taking a high-pier and long-span continuous beam bridge with span arrangement of (95+170+95) m as an example, a numerical analysis model is established based on finite element software. According to the established wave selection criterion, 10 far-field long-period seismic records and 10 ordinary seismic records are selected from the strong earthquake record database. Using nonlinear time history analysis method, the difference of seismic response of long-span continuous beam bridge with isolated high piers under the action of ordinary ground motion and far-field long-period ground motion is studied. The results show that compared with the ordinary ground motion, the seismic response of long-span continuous beam bridge with isolated high piers is obviously increased under the action of long-period ground motion in the far field. When building isolated long-span bridges in areas with great influence of long-period ground motion in the far field, attention should be paid to the adverse effects caused by the frequency spectrum characteristics of ground motion.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Man Liao ◽  
Bin Wu ◽  
Xianzhi Zeng ◽  
Kailai Deng

AbstractIn the seismic design of long-span bridges, the classic bi-linear model was used to simulate the frictional restoring force of the rubber bearings. However, in actual earthquake, the rubber bearing suffered fluctuating axial pressure in earthquake, even separated from the beam when vertical component of the earthquake was too strong. Employing the bi-linear model for the bearing may incorrectly estimate the seismic response of the bearings, as well as the whole bridge. This paper developed a nonlinear frictional bearing model, which can consider the variation of the frictional restoring force in the bearings, even the separation with the beam in vertical directions. A typical continuous beam bridge was modeled in ABAQUS, and incremental dynamic analysis was conducted for the quantitative comparison of the seismic responses using different bearing models. The intensity measure was selected as the ratio of the peak ground acceleration (PGA) in the vertical direction to the PGA in the horizontal direction. The analysis results indicated that the different bearing model led to the significant different seismic response for the bearings and piers, even the vertical component was small. The bi-linear bearing model would underestimate the seismic demand of the bearing and piers.


2012 ◽  
Vol 204-208 ◽  
pp. 786-789
Author(s):  
Chun Xiang Qi ◽  
Fei Xia ◽  
Run Feng Zhang

In order to discuss the displacement impact coefficient of the simply supported beam bridge, reinforced-concrete simply supported beam models with different span and different section stiffness are set up using the finite element method in the paper. The maximum dynamic displacement of beam models under the running vehicle is calculated. Combined with the maximum static displacement, the corresponding impact coefficients of models are calculated. At the same time, the modal analysis of beams is conducted to calculate the impact coefficient based on the base frequency. From comparing with the displacement impact coefficient, the bridge spans and section stiffness influence on impact coefficient is analyzed. Results show that the influence of section stiffness on impact coefficient can be ignored, but the influence of the change of span cannot be ignored. It will provide a reference for designing and detection technology of reinforced-concrete simply supported beam.


2012 ◽  
Vol 238 ◽  
pp. 748-752
Author(s):  
Chen Zhou ◽  
Quan Sheng Yan ◽  
Heng Bin Zheng ◽  
Guo Wei

Bridge jacking technique in the old bridge reconstruction project have broad application prospect, this paper is aim to share the bridge jacking technique and design the steel bracket as the load carrying platform. The finite element calculation is conducted by ANSYS software considering the concrete material nonlinearity with reasonable stress-strain relationship of concrete and element type. Compared with the experimental data, the model reliabilities and the results of two test programs are evaluated. We can conclude that the second structure form of this paper is safer, which can provide the meaningful guidance for similar projects.


2008 ◽  
Vol 17 (26) ◽  
pp. 102-103 ◽  
Author(s):  
Yanwei NIU ◽  
Xuefei SHI ◽  
Xin RUAN
Keyword(s):  

2010 ◽  
Vol 163-167 ◽  
pp. 2830-2834
Author(s):  
Zhi Ping Bai ◽  
Xie Dong Zhang ◽  
Cheng Lin Han

Based on the pile-soil function and damper boundary condition influence by Finite Element Method, taking Bao-Shu yellow river extra long-span bridge as the project object, the deformation effect of the bridge subjected to flowing and melting ice in spring was analyzed considering dynamical action mode. The results revealed that the deformation from this kind of action is tittly small and the bridge structure is reliable and stable. Then the calculation and analysis have been put into design and construction stage.


2014 ◽  
Vol 501-504 ◽  
pp. 1318-1322
Author(s):  
Xu Luo ◽  
Lu Rong Cai

When the scaffold construction method is applied on long-span steel trussed arch bridges, reasonable setting of the temporary pier elevation has significant influence on assembly linearis and safety assembly of long-span steel trussed arch bridges with semi-cantilever. In this paper, in accordance with the manufacturing linearis steel trussed beam bridge and steel truss beam linearis changing during building process, the calculation of temporary pier elevation was studied systematically, and practical function was deduced. Then, the method was applied to a long-span steel trussed arch bridge. The obtained result by in-situ assembly and dismantling presents that: 50 mm preserved method is considered in this paper, which can provide convenience for removing the temporary pier. At the same time, the rationality and reliability of the presented approach are verified. It also can provide reference for similar bridge construction.


Sign in / Sign up

Export Citation Format

Share Document