FRACTURE RESISTANCE OF CEMENTED AND INTEGRATED CERAMIC CROWNS SUPPORTED ON ZIRCONIA IMPLANT ABUTMENTS (IN VITRO STUDY)

2020 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
catherine Mounir
2016 ◽  
Vol 42 (6) ◽  
pp. 464-468 ◽  
Author(s):  
Anuya Patankar ◽  
Mohit Kheur ◽  
Supriya Kheur ◽  
Tabrez Lakha ◽  
Murtuza Burhanpurwala

This in vitro study evaluated the effect of different levels of preparation of an implant abutment on its fracture resistance. The study evaluated abutments that incorporated a platform switch (Myriad Plus Abutments, Morse Taper Connection) and Standard abutments (BioHorizons Standard Abutment, BioHorizons Inc). Each abutment was connected to an appropriate implant and mounted in a self-cured resin base. Based on the abutment preparation depths, 3 groups were created for each abutment type: as manufactured, abutment prepared 1 mm apical to the original margin, and abutment prepared 1.5 mm to the original margin. All the abutments were prepared in a standardized manner to incorporate a 0.5 mm chamfer margin uniformly. All the abutments were torqued to 30 Ncm on their respective implants. They were then subjected to loading until failure in a universal testing machine. Abutments with no preparation showed the maximum resistance to fracture for both groups. As the preparation depth increased, the fracture resistance decreased. The fracture resistance of implant abutment junction decreases as the preparation depth increases.


2020 ◽  
Vol 12 (5) ◽  
pp. 517
Author(s):  
Tharammal Fayaz ◽  
SanathK Shetty ◽  
Mohammed Zahid ◽  
KarkalaS Suhaim ◽  
Mallikarjun Ragher ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0223924 ◽  
Author(s):  
Janina Golob Deeb ◽  
Sompop Bencharit ◽  
Nishchal Dalal ◽  
Aous Abdulmajeed ◽  
Kinga Grzech-Leśniak

2021 ◽  
Vol 11 (2) ◽  
pp. 857
Author(s):  
Keunbada Son ◽  
Kyu-Bok Lee

The purpose of this in vitro study was to evaluate marginal and internal fits of ceramic crowns fabricated with chairside computer-aided design and manufacturing (CAD/CAM) systems. An experimental model based on ISO 12836:2015 was digitally scanned with different intraoral scanners (Omnicam (CEREC), EZIS PO (DDS), and CS3500 (Carestream)). Ceramic crowns were fabricated using the CAD/CAM process recommended by each system (CEREC, EZIS, and Carestream systems; N = 15). The 3-dimensional (3D) marginal and internal fit of each ceramic crown was measured using a 3D inspection software (Geomagic control X). Differences among the systems and various measurements were evaluated using the Kruskal–Wallis test. Statistically significant differences were validated using pairwise comparisons (α = 0.05). Occlusal gaps in the CEREC, EZIS, and Carestream groups were 113.0, 161.3, and 438.2 µm, respectively (p < 0.001). The axial gaps were 83.4, 78.0, and 107.9 µm, respectively. The marginal gaps were 77.8, 99.3, and 60.6 µm, respectively, and the whole gaps were 85.9, 107.3, and 214.0 µm, respectively. Significant differences were observed with the EZIS system compared with the other two systems in terms of the marginal gap sizes. The CEREC system showed no significant differences among the four measured regions. However, the EZIS and Carestream systems did show a statistically significant difference (p < 0.05). All three systems were judged to be capable of fabricating clinically acceptable prostheses, because the marginal gap, which is the most important factor in the marginal fit of prostheses, was recorded to be below 100 µm in all three systems.


Sign in / Sign up

Export Citation Format

Share Document