scholarly journals Vertical Marginal Gap Distance of CAD/CAM Milled BioHPP PEEK Coping Veneered by HIPC Compared to Zirconia Coping Veneered by CAD-On lithium disilicate “In-Vitro Study”

2020 ◽  
Vol 2 (2) ◽  
pp. 43-50
Author(s):  
Michael Meshreky ◽  
Carl Halim ◽  
Hesham Katamish
2021 ◽  
Vol 11 (2) ◽  
pp. 857
Author(s):  
Keunbada Son ◽  
Kyu-Bok Lee

The purpose of this in vitro study was to evaluate marginal and internal fits of ceramic crowns fabricated with chairside computer-aided design and manufacturing (CAD/CAM) systems. An experimental model based on ISO 12836:2015 was digitally scanned with different intraoral scanners (Omnicam (CEREC), EZIS PO (DDS), and CS3500 (Carestream)). Ceramic crowns were fabricated using the CAD/CAM process recommended by each system (CEREC, EZIS, and Carestream systems; N = 15). The 3-dimensional (3D) marginal and internal fit of each ceramic crown was measured using a 3D inspection software (Geomagic control X). Differences among the systems and various measurements were evaluated using the Kruskal–Wallis test. Statistically significant differences were validated using pairwise comparisons (α = 0.05). Occlusal gaps in the CEREC, EZIS, and Carestream groups were 113.0, 161.3, and 438.2 µm, respectively (p < 0.001). The axial gaps were 83.4, 78.0, and 107.9 µm, respectively. The marginal gaps were 77.8, 99.3, and 60.6 µm, respectively, and the whole gaps were 85.9, 107.3, and 214.0 µm, respectively. Significant differences were observed with the EZIS system compared with the other two systems in terms of the marginal gap sizes. The CEREC system showed no significant differences among the four measured regions. However, the EZIS and Carestream systems did show a statistically significant difference (p < 0.05). All three systems were judged to be capable of fabricating clinically acceptable prostheses, because the marginal gap, which is the most important factor in the marginal fit of prostheses, was recorded to be below 100 µm in all three systems.


Author(s):  
Francesco Ferrini ◽  
Gianpaolo Sannino ◽  
Carlo Chiola ◽  
Paolo Capparé ◽  
Giorgio Gastaldi ◽  
...  

The aim of this in vitro study was to compare the quality of digital workflows generated by different scanners (Intra-oral digital scanners (I.O.S.s)) focusing on marginal fit analysis. A customized chrome-cobalt (Cr-Co) implant abutment simulating a maxillary right first molar was fixed in hemi-maxillary stone model and scanned by eight different I.O.S.s: Omnicam® (Denstply Sirona, Verona, Italy) CS3500®, CS3600®, (Carestream Dental, Atlanta, GA, USA), True Definition Scanner® (3M, St. Paul, MN, USA), DWIO® (Dental Wings, Montreal, Quebec, Canada), PlanScan® (Planmeca Oy, Helsinki, Finland), 3D PROGRESS Plus® (MHT, Verona, Italy), TRIOS 3® (3Shape, Copenhagen, Denmark). Nine scans were performed by each tested I.O.S. and 72 copings were designed using a dental computer-assisted-design/computer-assisted-manufacturing (CAD/CAM) software (exocad GmbH, Darmstadt, Germany). According to CAD data, zirconium dioxide (ZrO2) copings were digitally milled (Roland DWX-50, Irvine, CA, USA). Scanning electron microscope (SEM) direct vision allowed for marginal gap measurements in eight points for each specimen. Descriptive analysis was performed using mean, standard deviation, and median, while the Kruskal–Wallis test was performed to determine whether the marginal discrepancies were significantly different between each group (significance level p < 0.05). The overall mean marginal gap value and standard deviation were 53.45 ± 30.52 μm. The minimum mean value (40.04 ± 18.90 μm) was recorded by PlanScan®, then 3D PROGRESS Plus® (40.20 ± 21.91 μm), True Definition Scanner® (40.82 ± 26.19 μm), CS3500® (54.82 ± 28.86 μm) CS3600® (59,67 ± 28.72 μm), Omnicam® (61.57 ± 38.59 μm), DWIO® (62.49 ± 31.54 μm), while the maximum mean value (67.95 ± 30.41 μm) was recorded by TRIOS 3®. The Kruskal–Wallis tests revealed a statistically significant difference (p-value < 0.5) in the mean marginal gaps between copings produced by 3D PROGRESS Plus®, PlanScan, True Definition Scanner, and the other evaluated I.O.S.s. The use of an I.O.S. for digital impressions may be a viable alternative to analog techniques. Although in this in vitro study PlanScan®, 3D PROGRESS Plus® and True Definition Scanner® may have showed the best performances, all I.O.S.s tested could provide clinically encouraging results especially in terms of marginal accuracy, since mean marginal gap values were all within the clinically acceptable threshold of 120 μm.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4311
Author(s):  
Mirza Rustum Baig ◽  
Aqdar A. Akbar ◽  
Munira Embaireeg

A polymer-infiltrated ceramic network (PICN) material has recently been introduced for dental use and evidence is developing regarding the fit accuracy of such crowns with different preparation designs. The aim of this in vitro study was to evaluate the precision of fit of machined monolithic PICN single crowns in comparison to lithium disilicate crowns in terms of marginal gap, internal gap, and absolute marginal discrepancies. A secondary aim was to assess the effect of finish line configuration on the fit accuracy of crowns made from the two materials. Two master metal dies were used to create forty stone dies, with twenty each for the two finish lines, shoulder and chamfer. The stone dies were scanned to produce virtual models, on which ceramic crowns were designed and milled, with ten each for the four material–finish line combinations (n = 10). Marginal gaps and absolute marginal discrepancies were evaluated at six pre-determined margin locations, and the internal gap was measured at 60 designated points using a stereomicroscope-based digital image analysis system. The influence of the material and finish line on the marginal and internal adaptation of crowns was assessed by analyzing the data using two-way analysis of variance (ANOVA), non-parametric, and Bonferroni multiple comparison post-hoc tests (α = 0.05). ANOVA revealed that the differences in the marginal gaps and the absolute marginal discrepancies between the two materials were significant (p < 0.05), but that those the finish line effect and the interaction were not significant (p > 0.05). Using the Mann–Whitney U test, the differences in IG for ‘material’ and ‘finish line’ were not found to be significant (p > 0.05). In conclusion, the finish line configuration did not seem to affect the marginal and internal adaptation of PICN and lithium disilicate crowns. The marginal gap of PICN crowns was below the clinically acceptable threshold of 120 µm.


Sign in / Sign up

Export Citation Format

Share Document