scholarly journals Analysis of Clonal Cytogenetic Abnormalities in Persistent Cytopenia: Relation of Degree of Dysplasia and Prognosis

2000 ◽  
Vol 111 (1) ◽  
pp. 258-262 ◽  
Author(s):  
Susi Scappaticci ◽  
Cesare Danesino ◽  
Elena Rossi ◽  
Catherine Klersy ◽  
Gian Mario Fiori ◽  
...  

2021 ◽  
Vol 224 (2) ◽  
pp. S175
Author(s):  
Jennifer E. Powel ◽  
Michail Spiliopoulos ◽  
Carlos R. Ferreira ◽  
Emily Rosenthal ◽  
Elena Sinkovskaya ◽  
...  

Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4301-4309 ◽  
Author(s):  
SS Clark ◽  
Y Liang ◽  
CK Reedstrom ◽  
SQ Wu

Initially, lymphoid cells transformed by v-abl or BCR/ABL oncogenes are poorly oncogenic but progress to full transformation over time. Although expression of the oncogene is necessary to initiate and maintain transformation, other molecular mechanisms are thought to be required for full transformation. To determine whether tumor progression in ABL oncogene-transformed lymphoid cells has a genetic basis, we examined whether progression of the malignant phenotype of transformed clones correlates with particular cytogenetic abnormalities. A modified in vitro bone marrow transformation model was used to obtain clonal Abelson murine leukemia virus-transformed B lymphoid cells that were poorly oncogenic. Multiple subclones were then derived from each clone and maintained over a marrow-derived stromal cell line for several weeks. Over time, clonally related Abelson murine leukemia virus-transformed subclones progressed asynchronously to full transformation. The data show that tumor progression can occur in the absence of detectable cytogenetic changes but, more importantly, that certain cytogenetic abnormalities appear reproducibly in highly malignant subclones. Therefore, three independent subclones showed deletion in a common region of chromosome 13. Other highly malignant cells carried a common breakpoint in the X chromosome, and, finally, two subclones carried an additional chromosome 5. These results are consistent with the hypothesis that ABL oncogenes are sufficient for the initial transformation of cells but that additional genetic events can drive oncogenic progression. These observations further suggest that diverse genetic mechanisms may be able to drive tumor progression in cells transformed with ABL oncogenes.


1999 ◽  
Vol 14 (Suppl_3) ◽  
pp. 308-308
Author(s):  
C.M.H. Combelles ◽  
M.J. Carabatsos ◽  
J.B. Mailhes ◽  
S.N. London ◽  
D.F. Albertini

2011 ◽  
Vol 28 (3) ◽  
pp. 176-185
Author(s):  
Milena Georgieva Velizarova ◽  
Evgueniy A. Hadjiev ◽  
Kamelia V. Alexandrova ◽  
Ivanka I. Dimova ◽  
Draga I. Toncheva ◽  
...  

Blood ◽  
2005 ◽  
Vol 105 (9) ◽  
pp. 3465-3471 ◽  
Author(s):  
Xiaxin Li ◽  
Michelle M. Le Beau ◽  
Samantha Ciccone ◽  
Feng-Chun Yang ◽  
Brian Freie ◽  
...  

AbstractCurrent strategies for genetic therapy using Moloney retroviruses require ex vivo manipulation of hematopoietic cells to facilitate stable integration of the transgene. While many studies have evaluated the impact of ex vivo culture on normal murine and human stem/progenitor cells, the cellular consequences of ex vivo manipulation of stem cells with intrinsic defects in genome stability are incompletely understood. Here we show that ex vivo culture of Fancc-/- bone marrow cells results in a time-dependent increase in apoptosis of primitive Fancc-/- progenitor cells in conditions that promote the proliferation of wild-type stem/progenitor cells. Further, recipients reconstituted with the surviving Fancc-/- cells have a high incidence of cytogenetic abnormalities and myeloid malignancies that are associated with an acquired resistance to tumor necrosis factor α (TNF-α). Collectively, these data indicate that the intrinsic defects in the genomic stability of Fancc-/- stem/progenitor cells provide a selective pressure for cells that are resistant to apoptosis and have a propensity for the evolution to clonal hematopoiesis and malignancy. These studies could have implications for the design of genetic therapies for treatment of Fanconi anemia and potentially other genetic diseases with intrinsic defects in genome stability.


Sign in / Sign up

Export Citation Format

Share Document