scholarly journals MICROLEAKAGE AND MICROSHEAR BOND STRENGTH OF DIFFERENT TYPES OF DENTAL COMPOSITE RESTORATIVE MATERIALS

2016 ◽  
Vol 62 (1) ◽  
pp. 1161-1168
Author(s):  
Mohamed Ebrahim ◽  
Adel Shaaban
2021 ◽  
Vol 9 (D) ◽  
pp. 179-185
Author(s):  
Nouran Hussein ◽  
Dina A. El Refai ◽  
Ghada Atef Alian

Abstract AIM: The aim of this study was to compare the remineralization ability, ion release, microshear bond strength and wear resistance of a claimed bioactive restorative material (ACTIVA BioACTIVE Restorative, Pulpdent Corporation, Watertown, USA) with the conventional resin composite (​Filtek Z350 XT, 3M ESPE Elipar, Germany). MATERIALS AND METHODS: The remineralization ability was evaluated after 28 days using Energy Dispersive X-Ray (EDX) analysis. Ion release was investigated at three-time intervals: 1, 14 and 28 days. Calcium and phosphate ions release were determined by using ion chromatography system. Microshear bond strength was assessed using Universal Testing Machine. A wear test was conducted using a dual axis chewing simulator. RESULTS: ACTIVA™ was found to induce remineralization to the demineralized dentin. Results revealed that ACTIVA™ released Ca2+ and PO4-3 ions, whilst Filtek Z350 XT did not. Concerning microshear bond strength ACTIVA™ without adhesive application showed unacceptable failure. Regarding wear resistance there was no statistically significant difference between them. CONCLUSION: ACTIVA™ bioactive restorative material seems promising bioactive restorative materials. Clinical trials are recommended to compare clinical performance of ACTIVA™ with the other restorative materials.


2021 ◽  
Vol 15 (1) ◽  
pp. 734-741
Author(s):  
Sara Valizadeh ◽  
Elham Farhadi ◽  
Aida Moradi ◽  
Sedighe S. Hashemikamangar

Introduction: Currently, non-thermal plasma is used to modify the enamel and dentin surfaces to improve the bonding surface to dental composite resins. Non-thermal plasma creates a hydrophilic surface, decreases the contact angle, and improves the bonding quality. The present study aimed to evaluate the microshear bond strength (µSBS) of composite resins to dentin using different adhesive systems. Materials and Methods: Bovine incisor teeth were randomly assigned to three groups of G-Premio, Clearfil SE Bond, and Adper Single Bond adhesive groups after preparation. Each group was divided into two subgroups in terms of argon plasma surface preparation, and each subgroup was divided into two groups in terms of thermocycling (n=12). The microshear bond strength of the samples was determined using a universal testing machine. Three-way ANOVA was used to analyze the effect of the adhesive, plasma preparation, and thermocycling. Post hoc Tukey tests were used for two-by-two comparisons of µSBS. Statistical significance was set at P <0.05. Results: The results of the µSBS test showed that the application of plasma resulted in a significant increase in the mean µSBS in the G-Premio group, with no significant increase in the Clearfil SE bond and Adper Single groups. The effect of thermocycling after plasma application was significant only in the Adper Single group. Conclusion: The application of plasma might increase the bond strength of composite resins to dentin. However, further studies are necessary.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zahra Fattah ◽  
Zahra Jowkar ◽  
Safoora Rezaeian

The purpose of this study was to assess the influence of three different types of nanoparticles (silver (SNPs), titanium dioxide (TNPs), and zinc oxide (ZNPs)) on the microshear bond strength of conventional glass ionomer cement (CGIC) and resin-modified glass ionomer cement based on whether CGIC or RMGIC is used with four subgroups (based on the incorporation of SNPs, ZNPs, and TNPs in addition to a control subgroup) (n = 12) as follows: CGIC, CGIC + TNP, CGIC + ZNP, CGIC + SNP, RMGIC, RMGIC + TNP, RMGIC + ZNP, and RMGIC + SNP. After 24 hours, the μSBS of specimens was tested and the obtained data were analyzed using two-way ANOVA and Tukey’s HSD test. The obtained results showed that the incorporation of TNPs in two glass ionomers was not statistically significant compared with the control subgroups ( p  > 0.05). In the first group, the highest and lowest mean μSBS were, respectively, observed in the CGIC + SNP subgroup and CGIC + ZNP subgroup. In the second group, RMGIC + ZNP and RMGIC + SNP, respectively, showed the highest and lowest mean μSBS compared to the other subgroups. According to the results, it can be concluded that TNPs can be incorporated into both CGIC and RMGIC without compromising the bond strength of glass ionomers. SNPs and ZNPs can be, respectively, added to CGICs and RMGICs to improve the bond strength of the restoration.


Sign in / Sign up

Export Citation Format

Share Document