scholarly journals Accuracy of Flapless implant placement with 3D printed surgical guide

2017 ◽  
Vol 63 (3) ◽  
pp. 2225-2233
Author(s):  
Inass AbuElmagd ◽  
Alshaimaa Shabaan ◽  
Amr Salah eldin
Author(s):  
Emad TOUTANGY ◽  
Bassel BRAD ◽  
Mohammad Alaa ALZEİN ◽  
Mohammed Yamen AL-SHURBAJİ AL-MOZİEK

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Johannes Spille ◽  
Feilu Jin ◽  
Eleonore Behrens ◽  
Yahya Açil ◽  
Jürgen Lichtenstein ◽  
...  

Abstract Background The aim of the study is to evaluate the accuracy of a new implant navigation system on two different digital workflows. Methods A total of 18 phantom jaws consisting of hard and non-warping plastic and resembling edentulous jaws were used to stimulate a clinical circumstance. A conventional pilot-drill guide was conducted by a technician, and a master model was set by using this laboratory-produced guide. After cone beam computed tomography (CBCT) and 3D scanning of the master models, two different digital workflows (marker tray in CBCT and 3D-printed tray) were performed based on the Digital Imaging Communication in Medicine files and standard tessellation language files. Eight Straumann implants (4.1 mm × 10 mm) were placed in each model, six models for each group, resulting in 144 implant placements in total. Postoperative CBCT were taken, and deviations at the entry point and apex as well as angular deviations were measured compared to the master model. Results The mean total deviations at the implant entry point for MTC (marker tray in CBCT), 3dPT (3d-printed tray), and PDG (pilot-drill guide) were 1.024 ± 0.446 mm, 1.027 ± 0.455 mm, and 1.009 ± 0.415 mm, respectively, and the mean total deviations at the implant apex were 1.026 ± 0.383 mm, 1.116 ± 0.530 mm, and 1.068 ± 0.384 mm. The angular deviation for the MTC group was 2.22 ± 1.54°. The 3dPT group revealed an angular deviation of 1.95 ± 1.35°, whereas the PDG group showed a mean angular deviation of 2.67 ± 1.58°. Although there were no significant differences among the three groups (P > 0.05), the navigation groups showed lesser angular deviations compared to the pilot-drill-guide (PDG) group. Implants in the 3D-printed tray navigation group showed higher deviations at both entry point and apex. Conclusions The accuracy of the evaluated navigation system was similar with the accuracy of a pilot-drill guide. Accuracy of both preoperative workflows (marker tray in CBCT or 3D-printed tray) was reliable for clinical use.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Lukas Postl ◽  
Thomas Mücke ◽  
Stefan Hunger ◽  
Oliver Bissinger ◽  
Michael Malek ◽  
...  

Abstract Background The accuracy of computer-assisted biopsies at the lower jaw was compared to the accuracy of freehand biopsies. Methods Patients with a bony lesion of the lower jaw with an indication for biopsy were prospectively enrolled. Two customized bone models per patient were produced using a 3D printer. The models of the lower jaw were fitted into a phantom head model to simulate operation room conditions. Biopsies for the study group were taken by means of surgical guides and freehand biopsies were performed for the control group. Results The deviation of the biopsy axes from the planning was significantly less when using templates. It turned out to be 1.3 ± 0.6 mm for the biopsies with a surgical guide and 3.9 ± 1.1 mm for the freehand biopsies. Conclusions Surgical guides allow significantly higher accuracy of biopsies. The preliminary results are promising, but clinical evaluation is necessary.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1236
Author(s):  
Jung-Hwa Lim ◽  
Enkhjargal Bayarsaikhan ◽  
Seung-Ho Shin ◽  
Na-Eun Nam ◽  
June-Sung Shim ◽  
...  

This study evaluated the internal fit and the accuracy of the implant placement position in order to determine how the surface shape of the tooth and the offset influence the accuracy of the surgical guide. The acquired digital data were analyzed in three dimensions using 3D inspection software. The obtained results confirmed that the internal fit was better in the groove sealing (GS) group (164.45 ± 28.34 μm) than the original shape (OS) group (204.07 ± 44.60 μm) (p < 0.001), and for an offset of 100 μm (157.50 ± 17.26 μm) than for offsets of 30 μm (206.48 ± 39.12 μm) and 60 μm (188.82 ± 48.77 μm) (p < 0.001). The accuracy of implant placement was better in the GS than OS group in terms of the entry (OS, 0.229 ± 0.092 mm; GS, 0.169 ± 0.061 mm; p < 0.001), apex (OS, 0.324 ± 0.149 mm; GS, 0.230 ± 0.124 mm; p < 0.001), and depth (OS, 0.041 ± 0.027 mm; GS, 0.025 ± 0.022 mm; p < 0.001). In addition, the entries (30 μm, 0.215 ± 0.044 mm; 60 μm, 0.172 ± 0.049 mm; 100 μm, 0.119 ± 0.050 mm; p < 0.001) were only affected by the amount of offset. These findings indicate that the accuracy of a surgical guide can be improved by directly sealing the groove of the tooth before manufacturing the surgical guide or setting the offset during the design process.


Author(s):  
Giovanni de Almeida Prado Di Giacomo ◽  
Patrícia Cury ◽  
Airton Moreira da Silva ◽  
Jorge Vicente Lopes da Silva ◽  
Carlos Eduardo Pompeo Souto ◽  
...  

This study was designed to evaluate the accuracy of a novel computer-designed and selectively laser sintered surgical guide for flapless dental implant placement in the edentulous jaw. Fifty dental implants were placed in 11 patients with at least one totally edentulous jaw. Initially, cone-beam computed tomography (CBCT) was performed in each patient to define the virtual position of the dental implants based on the assessment of bone availability and the proposed dental prosthesis. After virtual planning, 3D surgical guides were printed using selective laser sintering. CBCT was repeated after the surgery, and the pre-and postoperative images were overlapped in the CAD software to compare the planned and actual positions of the dental implants using a one-sample t-test. The mean ± angular standard deviation between the long axes of the planned and final dental implant positions was 4.58 ±2.85 degrees; The linear deviation in the coronal position was  0.87 ± 0.49 mm and  in the apical region of the dental implants was 1.37 ± 0.69 mm. These differences were statistically significant (p &lt;0.001). The proposed modifications reduced the deviations, resulting in an improvement in the technique. We were able to place implants and temporary prostheses using the present protocol, taking into account the differences between the planned and final positions of the dental implants.


2020 ◽  
Vol 78 (10) ◽  
pp. e67-e68
Author(s):  
T. Gauger ◽  
T. Gadah ◽  
V. Dutra ◽  
W.S. Lin ◽  
D. Morton ◽  
...  

Author(s):  
Vasilios Alevizakos ◽  
Gergo Mitov ◽  
Constantin von See

The aim of this case report is to describe the combining of a surgical guide with a temporary restoration to streamline the implant process. A 54-year-old male patient presenting partial edentulism underwent computer-aided template-guided implant placement for the replacement of the missing upper second right incisor. The presented technique was used during the surgical procedures; it introduced the integration of a surgical guide into the temporary fixed partial denture. Using computer-aided design, computer-aided manufacturing technology and virtual implant planning, a temporary-implantation fixed partial denture was constructed, and a guidance sleeve was implemented into it. The implant bed preparation was then performed using the bridge as a surgical guide. After osteotomy, the guidance sleeve within the bridge was sealed, and the bridge was temporarily incorporated for submerged healing of the implant. The usage of a temporary restoration as a surgical guide seems to make the digital workflow of guided implant placement more efficient, by achieving a representative clinical outcome.


2020 ◽  
Vol 9 (8) ◽  
pp. 2322 ◽  
Author(s):  
Stefano Pieralli ◽  
Benedikt Christopher Spies ◽  
Valentin Hromadnik ◽  
Robert Nicic ◽  
Florian Beuer ◽  
...  

3D printed surgical guides are used for prosthetically-driven oral implant placement. When manufacturing these guides, information regarding suitable printing techniques and materials as well as the necessity for additional, non-printed stock parts such as metal sleeves is scarce. The aim of the investigation was to determine the accuracy of a surgical workflow for oral implant placement using guides manufactured by means of fused deposition modeling (FDM) from a biodegradable and sterilizable biopolymer filament. Furthermore, the potential benefit of metal sleeve inserts should be assessed. A surgical guide was designed for the installation of two implants in the region of the second premolar (SP) and second molar (SM) in a mandibular typodont model. For two additive manufacturing techniques (stereolithography [SLA]: reference group, FDM: observational group) n = 10 surgical guides, with (S) and without (NS) metal sleeves, were used. This resulted in 4 groups of 10 samples each (SLA-S/NS, FDM-S/NS). Target and real implant positions were superimposed and compared using a dedicated software. Sagittal, transversal, and vertical discrepancies at the level of the implant shoulder, apex and regarding the main axis were determined. MANOVA with posthoc Tukey tests were performed for statistical analyses. Placed implants showed sagittal and transversal discrepancies of <1 mm, vertical discrepancies of <0.6 mm, and axial deviations of ≤3°. In the vertical dimension, no differences between the four groups were measured (p ≤ 0.054). In the sagittal dimension, SLA groups showed decreased deviations in the implant shoulder region compared to FDM (p ≤ 0.033), whereas no differences in the transversal dimension between the groups were measured (p ≤ 0.054). The use of metal sleeves did not affect axial, vertical, and sagittal accuracy, but resulted in increased transversal deviations (p = 0.001). Regarding accuracy, biopolymer-based surgical guides manufactured by means of FDM present similar accuracy than SLA. Cytotoxicity tests are necessary to confirm their biocompatibility in the oral environment.


Sign in / Sign up

Export Citation Format

Share Document