scholarly journals Survivorship and growth rates for some transplanted coral reef building species and their potential for coral reef rehabilitation in the Red Sea

2019 ◽  
Vol 23 (2) ◽  
pp. 183-193 ◽  
Author(s):  
Mostafa A. M. Mahmoud ◽  
Mahmoud A. Dar ◽  
Hussein N. M. Hussein ◽  
Mohamed E. A. El-Metwally ◽  
Mahmoud M. Maaty ◽  
...  
Keyword(s):  
Red Sea ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanessa Robitzch ◽  
Victor Molina-Valdivia ◽  
Jaiber J. Solano-Iguaran ◽  
Mauricio F. Landaeta ◽  
Michael L. Berumen

AbstractVery little is known about the ecology and biology of the smallest marine vertebrates, fishes in the genus Schindleria. Even though over half of named Schindleria species have been identified in the Red Sea, the collection of only very few specimens has been documented. Here, we assessed abundance patterns of nearly two thousand Red Sea long dorsal fin (LDF) adults and found evidence for putative seasonal and spatial differences, likely related to differing habitat and environmental conditions. The highest abundances were outside local seasonal temperature extremes and decoupled from peaks of coral reef fish recruitment. We also found evidence for global trends in abundances related to lunar cycles using our Red Sea data and that from a recently published large collection of specimens from the DANA Expedition (1928–1930). The abundance of adult LDF Schindleria in relation to lunar phases differed significantly, with most Schindleria caught outside the full moon, and mostly during the new moon in the Red Sea and the 3rd quarter moon in the DANA collection. We further suggest that the abundances of Schindleria at coral reefs may be related to reproductive cycles and that these cycles may be timed with the moon as back-calculations of hatch dates from otoliths from the Red Sea significantly resulted after the new moon, making Schindleria the fastest-lived coral reef fish with the shortest generation times. Schindleria could be the most numerous coral reef fish in the world, for which we encourage increased research.


2012 ◽  
Vol 9 (3) ◽  
pp. 1253-1265 ◽  
Author(s):  
P. Sabatier ◽  
J.-L. Reyss ◽  
J. M. Hall-Spencer ◽  
C. Colin ◽  
N. Frank ◽  
...  

Abstract. Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 ± 1.1 mm yr−1 (2.6 polyps per year). Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions. For the 80 cm-long L. pertusa colony, metal-oxide contamination remained in both the middle and basal part of the coral skeleton despite cleaning, inhibiting similar age and growth rate estimates. The youngest part of the colony was free of metal oxides and this 15 cm section had an estimated a growth rate of 8 mm yr−1, with high uncertainty (~1 polyp every two to three years). We are less certain of this 210Pb growth rate estimate which is within the lowermost ranges of previous growth rate estimates. We show that 210Pb-226Ra dating can be successfully applied to determine the age and growth rate of framework-forming cold-water corals if Mn-Fe oxide deposits can be removed. Where metal oxides can be removed, large M. oculata and L. pertusa skeletons provide archives for studies of intermediate water masses with an up to annual time resolution and spanning over many decades.


2015 ◽  
Vol 19 (1) ◽  
pp. 37-54
Author(s):  
Ahamad M. Azab ◽  
Mostafa A. Mousa ◽  
Hassan M. Khalaf-Allah ◽  
Mosab A. M. Ali

Sign in / Sign up

Export Citation Format

Share Document