bypassed oil
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 23)

H-INDEX

6
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Amal Al-Sane ◽  
Mohammad A. Al-Bahar ◽  
Anup Bora ◽  
Prashant S. Dhote ◽  
Gopi Nalla ◽  
...  

Abstract During the progressive development of mature fields, it is imperative to drill many infill wells to accelerate production and access bypassed oil. Optimizing the infill well spacing is always the concern to reduce interference with existing wells and improve recovery. In the present study, using intelligent data mining techniques, a new analysis and visualization tool has been developed and implemented to estimate and map drainage radius by well to assess the efficiency of the current development pattern and properly plan future wells. The tool deployed several performance-based techniques to estimate the contacted stock-tank oil initially in place (STOIIP) by each existing well, and outcomes can be compared between techniques for validation. The contacted STOIIP is then converted into an effective drainage radius by well using reservoir properties from the geo-cellular model. The evaluated reservoir is subdivided vertically into pay zones drained by the wells based on geological barriers/baffles to flow and connectivity across the zones. The tool estimates drainage radii of the wells produced from the reservoir using five different methods. The resultant Proved Developed Producing (PDP) reserves polygon maps are generated for the connected zones. The drainage radii of wells with behind-casing opportunities are estimated based on correlation and adjacent wells methods, and Proved Developed Non-Producing (PDNP) reserves polygon maps were generated. Well interference density is estimated based on overlapping drainage radii polygons with adjacent well locations, which has then been validated with production and pressure data from the wells. This paper describes the methodology by which the well drainage radii and well interference density can be estimated and implemented on a selected reservoir. This workflow can be successfully used to identify drained and undrained areas around the wellbore and opportunities for additional infill wells in the various pay zones of the reservoir. This exercise observed consistency in the drainage radii cumulative distribution from decline curve analysis methods and the No-Further-Activities (NFA) simulation case.


Author(s):  
Alfageh Z. A.

Abstract: It is increasingly important to improve field productivity in today's competitive market. One way to achieve this, is to add new wells which are expensive and time consuming. The other alternative is to identify bypassed hydrocarbons, track changes in saturations and detect movement of reservoir fluid contacts from existing well bores already in place. It is considerably more cost effective and often more environmentally friendly to explore for those hidden hydrocarbons in old wells rather than drill new wells. As the field matures, there is a need to reevaluate the formation in older reservoirs and to focus the development strategy and approach on bypassed oil pockets and depletion levels in producing intervals. The ability to acquire essential logging data behind casing adds a new dimension to cased hole formation evaluation for locating and evaluating potential hydrocarbon zones in a mature field as in Magid field. A basic petrophysical evaluation was performed incorporating the data recorded behind casing by applying {Cased Hole Formation Resistivity Logging (CHFRL)} in each of these wells. Based on the analysis of cased hole formation evaluation results. The un-depleted intervals were commercially exploited adding reserve to the asset. Keywards: Hydrocarbon zones, Majid Field, Sirte Basin, Libya, CHFRL


2021 ◽  
Author(s):  
Christian Ihwiwhu ◽  
Ibi-Ada Itotoi ◽  
Udeme John ◽  
Nnamdi Obioha ◽  
Precious Okoro ◽  
...  

Abstract Understanding the complexity in the distribution of hydrocarbon in a simple structure with flow baffles and connectivity issues is critical in targeting and developing the remaining pay in a mature asset. Subtle facies changes (heterogeneity) can have drastic impact on reservoir fluids movement, and this can be crucial to identifying sweet spots in mature fields. This study evaluated selected reservoirs in Ovhor Field, Niger Delta, Nigeria with the objective of optimising production from the field by targeting undeveloped oil reserves or bypassed pay and gaining an improved understanding of the selected reservoirs to increase the company's reserves limits. The task at the Ovhor field, is complicated by poor stratigraphic seismic resolution over the field. 3-D geological (Sedimentology and stratigraphy) interpretation, Quantitative interpretation results and proper understanding of production data have been used in recognizing flow baffles and undeveloped compartments in the field. The full field 3-D model was constructed in such a way as to capture heterogeneities and the various compartments in the field. This was crucial to aid the simulation of fluid flow in the field for proper history matching, future production, prediction and design of well trajectories to adequately target undeveloped oil in the field. Reservoir property models (Porosity, Permeability and Net-To-Gross) were constructed by biasing log interpreted properties to a defined environment of deposition model whose interpretation captured the heterogeneities expected in the studied reservoirs. At least, two scenarios were modelled for the studied reservoirs to capture the range of uncertainties. This integrated approach led to the identification of bypassed oil in some areas of the selected reservoirs and an improved understanding of the studied reservoirs. Dynamic simulation and production forecast on the 4 reservoirs gave an undeveloped reserve of about 3.82 MMstb from two (2) identified oil restoration activities. These activities included side-tracking and re-perforation of existing wells. New wells have been drilled to test the results of our studies and the results confirmed our findings.


Author(s):  
Anzhu Xu ◽  
Fachao Shan ◽  
Xiao Yang ◽  
Jiaqi Li ◽  
Chenggang Wang ◽  
...  

AbstractChanneling between injectors and producers leads to bypassed oil left in the reservoir, which is one of most common reasons that wells in mature oil fields experience high water cut after long-term waterflooding. Identification and evaluation of the higher permeable channels (thief zones) are the key to effectively plug these thief zones and improve the conformance of water flood. This study applies three different methods to identify and evaluate the thief zones of a water injection project in North Buzazi Oilfield, a thick-bedded unconsolidated sandstone heavy oil reservoir in Manghestau, Kazakhstan. The thief zones, which evolve as a result of formation erosion and sand production, are identified and classified with respect to four different levels of significance using fuzzy comprehensive evaluation, production/injection profile method and pressure index (PI) methods. Good consistency is observed among the identification results using these methods. Finally, we present two ways to quantitatively evaluate the characteristics of the thief zones using water–oil-ratio as the input, which can be readily applied for future field development design.


Author(s):  
P.V. Kryganov ◽  
I.V. Afanaskin ◽  
S.G. Volpin ◽  
M. Yu Akhapkin ◽  
P.V. Yalov

2021 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
Agus Amperianto ◽  
Dyah Rini Ratnaningsih ◽  
Dedy Kristanto

AA field is a unitized asset operated by Corporate Oil Company since May 2018. The main producing formation of AA field is a reef build-up carbonate reservoir. The field has been on production since 2004 with OOIP of 297 MMSTB. As of November 2019 the cumulative production was estimated 120.7 MMSTB with RF of 41%. The carbonate reservoir has properties with relatively high heterogeneity –both vertically as well as laterally – which leads to production variation of the wells. The production performance shows an estimated 30% decline and significantly increasing water-cut. The production data shows a much faster water production compared with the cumulative production, which is also the greatest challenge in the AA field.There are several key contributing factors for the water production in AA field:Water channeling behind casing due to poor cement bond. This is supported by Chan Plot analysis.Uneven production of the wells leading to varying water rise and introduces difficulty in water contact determination.Water coning due to production exceeding the critical rate.Several efforts have been performed to optimize production, namely: identification of the potential of remaining hydrocarbon (bypassed oil) in the wells by evaluating current saturation evaluation through downhole surveillance, estimation of current water contact and cement bond improvement.The preparation steps of the production optimization process are summarized below:Screening of Candidate WellsEvaluation of Cement Bond QualityWellsite Execution for Bypassed Oil EvaluationWell PreparationOptimum C/O Log to Evaluate Current Saturation and to Identify Bypassed Oil ZonesBypassed Oil Interval ProductionThis section discusses one of successful cases in the production optimization effort implemented in the AA- field.AA-12 wellThe last production of AA-12 well was 84 BOPD. Chan plot showed possibility of water channeling, which was supported by CBL result. The zone of existing perforation interval was indicated to have “free pipe” behind the casing. Remedial cementing was then performed until sufficient zonal isolation was obtained. After subsequent CBL confirmed good zonal isolation, C/O log was then performed. The C/O log result indicated several reservoir zones with potential bypassed oil. The new production interval was selected based on following consideration: So between 55-60%, height above current OWC of 185 ft (56 m), distance to the adjacent wells of 1306 ft (398 m), porosity 12-17% and Production test of the new perforation resulted in 2186 BOPD with 0% water-cut.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hao Chen ◽  
Mingyang Yang ◽  
Haizeng Yu ◽  
Shenglai Yang ◽  
Mibang Wang

The main purpose of this investigation is to study the dynamic characteristics of shut-in and restart process in reservoirs with high water cut and strong vertical heterogeneity. The physical model, which includes three layers with low, medium, and high-permeability from top to bottom, was made according to the similarity law. Water drive test, the first restart test, and the second restart test were conducted, respectively. Water cut, oil recovery, and saturation distribution of the remaining oil were obtained during the tests. On this basis, mechanisms of shut-in and restart process of the reservoir were analyzed. It is concluded that appropriate developing plan such as layering mining and cyclic waterflooding should be implemented for developing strong heterogeneity reservoirs. The shut-in and restart tests showed that closing the water-flooded layer is beneficial for enlarging the sweep volume. Besides, water cut of 98% does not mean the economic limits of waterflooding. Under the effect of capillary force and gravitational differentiation, oil and water will redistribute in the formation. The redistribution of the oil and water, the fluctuation of the pressure difference, and the rebuild of the flow path, which produce parts of the bypassed oil, are the main mechanisms of the recovery enhancement by shut-in and restart operation. It should be noted that the shut-in and restart process indeed prolongs the waterflooding development. However, simply replying on the oil and water distribution under static conditions cannot greatly enhance the oil recovery.


SPE Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Yang Zhao ◽  
Jianqiao Leng ◽  
Baihua Lin ◽  
Mingzhen Wei ◽  
Baojun Bai

SummaryPolymer flooding has been widely used to improve oil recovery. However, its effectiveness would be diminished when channels (e.g., fractures, fracture-like channels, void-space conduits) are present in a reservoir. In this study, we designed a series of particular sandwich-like channel models and tested the effectiveness and applicable conditions of micrometer-sized preformed particle gels (PPGs, or microgels) in improving the polymer-flooding efficiency. We studied the selective penetration and placement of the microgel particles, and their abilities for fluid diversion and oil-recovery improvement. The results suggest that polymer flooding alone would be inefficient to achieve a satisfactory oil recovery as the heterogeneity of the reservoir becomes more serious (e.g., permeability contrast kc/km > 50). The polymer solution would vainly flow through the channels and leave the majority of oil in the matrices behind. Additional conformance-treatment efforts are required. We tried to inject microgels in an attempt to shut off the channels. After the microgel treatment, impressive improvement of the polymer-flooding performance was observed in some of our experiments. The water cut could be reduced significantly by as high as nearly 40%, and the sweep efficiency and overall oil recovery of the polymer flood were improved. The conditions under which the microgel-treatment strategy was effective were further explored. We observed that the microgels form an external impermeable cake at the very beginning of microgel injection and prevent the gel particles from entering the matrices. Instead, the microgel particles could selectively penetrate and shut off the superpermeable channels under proper conditions. Our results suggest that the 260-µm microgel particles tested in this study are effective to attack the excessive-water-production problem and improve the oil recovery when the channel has a high permeability (>50 darcies). The gels are unlikely to be effective for channels that are less than 30 darcies because of the penetration/transport difficulties. After the gels effectively penetrate and shut off the superpermeable channel, the subsequent polymer solution is diverted to the matrices (i.e., the unswept oil zones) to displace the bypassed oil. Overall, this study provides important insights to help achieve successful polymer-flooding applications in reservoirs with superpermeable channels.


Sign in / Sign up

Export Citation Format

Share Document