scholarly journals The Functional Role of Dried Fig, Date and Olive Oil on Rats with Immune Dysfunction

2018 ◽  
Vol 9 (9) ◽  
pp. 313-320
Author(s):  
Hoda Ibrahim ◽  
N. Rabeh ◽  
Hanan Elghandour ◽  
Shafika Sabry
2020 ◽  
Vol 21 (11) ◽  
pp. 4072 ◽  
Author(s):  
Linda Hofmann ◽  
Sonja Ludwig ◽  
Julius M. Vahl ◽  
Cornelia Brunner ◽  
Thomas K. Hoffmann ◽  
...  

Exosomes, the smallest group of extracellular vesicles, carry proteins, miRNA, mRNA, DNA, and lipids, which they efficiently deliver to recipient cells, generating a communication network. Exosomes strongly contribute to the immune suppressive tumor microenvironment of head and neck squamous cell carcinomas (HNSCC). Isolation of exosomes from HNSCC cell culture or patient’s plasma allows for analyzing their molecular cargo and functional role in immune suppression and tumor progression. Immune affinity-based separation of different exosome subsets, such as tumor-derived or T cell-derived exosomes, from patient’s plasma simultaneously informs about tumor status and immune dysfunction. In this review, we discuss the recent understanding of how exosomes behave in the HNSCC tumor microenvironment and why they are promising liquid biomarkers for diagnosis, prognosis, and therapy in HNSCC.


2009 ◽  
Vol 221 (03) ◽  
Author(s):  
B Steiger ◽  
I Leuschner ◽  
D Denkhaus ◽  
D von Schweinitz ◽  
T Pietsch
Keyword(s):  

2020 ◽  
Vol 9 (2) ◽  
pp. 78-88
Author(s):  
Mulugeta Mulat ◽  
Raksha Anand ◽  
Fazlurrahman Khan

The diversity of indole concerning its production and functional role has increased in both prokaryotic and eukaryotic systems. The bacterial species produce indole and use it as a signaling molecule at interspecies, intraspecies, and even at an interkingdom level for controlling the capability of drug resistance, level of virulence, and biofilm formation. Numerous indole derivatives have been found to play an important role in the different systems and are reported to occur in various bacteria, plants, human, and plant pathogens. Indole and its derivatives have been recognized for a defensive role against pests and insects in the plant kingdom. These indole derivatives are produced as a result of the breakdown of glucosinolate products at the time of insect attack or physical damages. Apart from the defensive role of these products, in plants, they also exhibit several other secondary responses that may contribute directly or indirectly to the growth and development. The present review summarized recent signs of progress on the functional properties of indole and its derivatives in different plant systems. The molecular mechanism involved in the defensive role played by indole as well as its’ derivative in the plants has also been explained. Furthermore, the perspectives of indole and its derivatives (natural or synthetic) in understanding the involvement of these compounds in diverse plants have also been discussed.


Sign in / Sign up

Export Citation Format

Share Document