scholarly journals EFFECT OF FARMYARD MANURE, PLANT DENSITY AND BIOFERTILIZER TREATMENTS ON GROWTH AND YIELD OF SUGAR BEET

2012 ◽  
Vol 3 (7) ◽  
pp. 2173-2187
Author(s):  
E. El-Ghareib ◽  
M. El-Hawary ◽  
A. El-Shafai ◽  
Y. El-Rayess
1974 ◽  
Vol 82 (1) ◽  
pp. 53-60 ◽  
Author(s):  
G. D. Heathcote

SUMMARYSatisfactory comparisons of the incidence of virus yellows in sugar-beet fields or experimental plots with different amounts of N fertilizer can be made from visual symptoms early in the growing season, but not later because dressings of N fertilizer may then mask or delay the appearance of symptoms. Sugar-beet plants in the field infected with beet mild yellowing virus (BMYV) are less likely to show symptoms than those with beet yellows virus (BYV), and plants with BMYV in the glasshouse often fail to show clear symptoms.Crop yield will be affected by the spread of viruses and colonization of plants by aphids, which in turn are affected by such factors as plant density, nitrogen supply and irrigation. The presence or absence of virus diseases and of aphids should therefore be considered during studies on the effects of these agronomic factors on the growth and yield of sugar beet. Where ample rather than little N fertilizer is used a small increase in the percentage of plants infected with yellows can be expected, and aphids will be more numerous, if plants are not treated with insecticide. Irrigation may also increase yellows incidence (e.g. from 16% to 20% of plants at Broom's Barn in 1967), but any loss of potential yield from increased virus incidence will be small compared with that gained from the use of fertilizer or irrigation. However, plant density can appreciably affect yellows incidence. For example, at Broom's Barn in 1972, 51% of plants in crops with 17500 plants/ha contracted BMYV but only 15 % of plants in crops with 126500 plants/ha. The less dense crop lost 3–4% more of its potential yield due to yellows than the dense crop; this represents a difference due to virus of about 0·25 t sugar/ha.


1974 ◽  
Vol 83 (1) ◽  
pp. 125-133 ◽  
Author(s):  
P. C. Longden ◽  
R. K. Scott ◽  
D. W. Wood

SUMMARYFrom monogerm sugar-beet seed as harvested non-viable fruits have to be eliminated, multigerm ones rejected and the size made sufficiently uniform for use in precision drills. Seed which had been gently rubbed to remove some of the cortex was graded for diameter, thickness and by aspiration, either singly or in combination. Effects of grading were determined by laboratory germination tests, radiography and field sowings in which seedling emergence and crop growth and yield were recorded.Grading by thickness was effective in removing multigerm fruits. Grading by aspiration and diameter rejected non-viable seed and reduced the variation in size. By combining all three grading methods, samples of seed of 80% germination and 90% monogermity were produced, provided the seed lot as threshed gave at least 50% germination. True seed weight increased with fruit diameter but only the first aspiration was effective in removing light true seeds. Radiography showed that both aspiration and, to a less extent, grading by diameter were effective in removing most empty fruits but neither eliminated those with shrivelled seed. The field experiments confirmed that increase in fruit diameter or aspiration gave more seedlings. Even at uniform, high plant density, sugar yields were less from the smallest (less than 3 mm diameter) than from the other grades of seed. The initial aspiration also improved sugar yield but further aspiration decreased yield.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 806
Author(s):  
Ali A. A. Mekdad ◽  
Mostafa M. Rady ◽  
Esmat F. Ali ◽  
Fahmy A. S. Hassan

Field trials for two seasons (2018/2019 and 2019/2020) were conducted to investigate the influence of the addition of three levels of potassium (K) (K1 = 60, K2 = 120, and K3 = 180 kg K2O ha−1) and/or sulfur (S) (S1 = 175, S2 = 350, and S3 = 525 kg CaSO4 ha−1) to the soil, as well as the sowing date (the 1st of September, D1; or the 1st of October, D2) on the potential improvement of physiology, growth, and yield, as well as the quality characteristics of sugar beet yield under soil salinity conditions. With three replicates specified for each treatment, each trial was planned according to a split-split plot in a randomized complete block design. The results revealed that early sowing (D1) led to significant improvements in all traits of plant physiology and growth, in addition to root, top, and biological yields and their quality, gross and pure sugar, and K- and S-use efficiencies based on root yield (R-KUE and R-SUE). The K3 level (180 kg K2O ha−1) positively affected the traits of plant physiology, growth, yield and quality, and R-SUE, and reduced the attributes of impurities, impurity index, and R-KUE. Additionally, the S3 level (525 kg CaSO4 ha−1) affirmatively affected plant physiology, growth, yield and quality traits, and R-KUE, and decreased impurity traits, impurity index, and R-SUE. The interaction of D1 × K3 × S3 maximized the yield of roots (104–105 ton ha−1) and pure sugar (21–22 ton ha−1). Path coefficient analysis showed that root yield and pure sugar content had positive direct effects with 0.62 and 0.65, and 0.38 and 0.38 in both studied seasons, respectively, on pure sugar yield. Significant (p ≤ 0.01) positive correlations were found between pure sugar yield and root yield (r = 0.966 ** and 0.958 **). The study results recommend the use of the integrative D1 × K3 × S3 treatment for sugar beet to obtain maximum yields and qualities under salt stress (e.g., 8.96 dS m−1) in dry environments.


1977 ◽  
Vol 13 (4) ◽  
pp. 325-335 ◽  
Author(s):  
Aguilar M. Immer ◽  
R. A. Fischer ◽  
Joshue Kohashi S.

SUMMARYThe influence of leaf area and inter-plant competition on the growth and yield of a crop of high-yielding dry beans (Phaseolus vulgaris L.) in central Mexico was studied, using density and thinning treatments. The highest seed yield (4210 kg/ha at 14% moisture) was obtained with the highest density (28·8 plants/m2). Thinning showed that pods/plant was sensitive to inter-plant competition between 36 and 78 days after seeding (first flower at 50 days), but seeds/pod, and especially seed weight, were not sensitive. It is suggested that the close positive relation between yield and leaf area duration derives from the influence of photosynthate supply upon pod number.


Author(s):  
Gleice A. de Assis ◽  
Myriane S. Scalco ◽  
Rubens J. Guimarães ◽  
Alberto Colombo ◽  
Anderson W. Dominghetti ◽  
...  

Irrigation associated to reduction on planting spaces between rows and between coffee plants has been a featured practice in coffee cultivation. The objective of the present study was to assess, over a period of five consecutive years, influence of different irrigation management regimes and planting densities on growth and bean yield of Coffea arabica L.. The treatments consisted of four irrigation regimes: climatologic water balance, irrigation when the soil water tension reached values close to 20 and 60 kPa; and a control that was not irrigated. The treatments were distributed randomly in five planting densities: 2,500, 3,333, 5,000, 10,000 and 20,000 plants ha-1. A split-plot in randomized block design was used with four replications. Irrigation promoted better growth of coffee plants and increased yield that varied in function of the plant density per area. For densities from 10,000 to 20,000 plants ha-1, regardless of the used irrigation management, mean yield increases were over 49.6% compared to the non-irrigated crop.


2015 ◽  
Vol 10 (3) ◽  
pp. 163 ◽  
Author(s):  
Rocco Bochicchio ◽  
Roberta Rossi ◽  
Rosanna Labella ◽  
Giovanni Bitella ◽  
Michele Perniola ◽  
...  

The demand for sources of nutraceuticals has led to the rediscovery and diffusion of traditional crops such as chia (<em>Salvia hispanica</em> L.), whose leaves and fruits are rich in W3 fatty acids and anti-oxidants. Chia originates in Central America but it is rapidly expanding to new areas. A field experiment conducted at Atella in Basilicata (Southern Italy) was set up to test the response of chia to N top-dress fertilisation (0 and 20 kg ha<sup>–1</sup>) and to sowing density (D1=125, D2=25, D3=8 and D4=4 plants m<sup>–2</sup>) in a split-plot design with three replications. First results show maximum leaf area index values up to 7.1 and fresh vegetative biomass production at early flowering ranging between 50.87 (D4) and 59.71 (D1) t ha<sup>–1</sup>. Yield increased with plant density: a significantly (P&lt;0.01) higher production (398 kg ha<sup>–1</sup>) was reached in D1. N top-dressing had a detrimental effect on yield and corresponded to higher lodging and lower maturation percentage of seeds, though non-significant. Based on our first results it seems worthwhile to continue agronomical trials for chia in herbaceous systems of southern Italy for leaf production based on traditional genotypes, while fruit production might be pursued by adopting high sowing density and the search for longer-day genotypes.


Sign in / Sign up

Export Citation Format

Share Document