Clinical Pharmacokinetics of the Prodrug Oseltamivir and its Active Metabolite Ro 64-0802

1999 ◽  
Vol 37 (6) ◽  
pp. 471-484 ◽  
Author(s):  
George He ◽  
Joseph Massarella ◽  
Penelope Ward
2007 ◽  
Vol 69 (3) ◽  
pp. 293-296 ◽  
Author(s):  
Takashi YAMANAKA ◽  
Masayuki YAMADA ◽  
Koji TSUJIMURA ◽  
Takashi KONDO ◽  
Shunichi NAGATA ◽  
...  

2011 ◽  
Vol 10 (1) ◽  
pp. 263 ◽  
Author(s):  
Carrie A Morris ◽  
Stephan Duparc ◽  
Isabelle Borghini-Fuhrer ◽  
Donald Jung ◽  
Chang-Sik Shin ◽  
...  

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
CH Hwang ◽  
BU Jaki ◽  
JG Napolitano ◽  
DC Lankin ◽  
J McAlpine ◽  
...  

2015 ◽  
Vol 17 (9) ◽  
pp. 139-143
Author(s):  
I.S. Dydykina ◽  
◽  
P.S. Dydykina ◽  
A.A. Kovalenko ◽  
◽  
...  

2020 ◽  
Vol 16 (5) ◽  
pp. 602-608
Author(s):  
Niloufar Marsousi ◽  
Serge Rudaz ◽  
Jules A. Desmeules ◽  
Youssef Daali

Background: Ticagrelor is a highly recommended new antiplatelet agent for the treatment of patients with acute coronary syndrome at moderate or high ischemic risk. There is a real need for rapid and accurate analytical methods for ticagrelor determination in biological fluids for pharmacokinetic studies. In this study, a sensitive and specific LC-MS method was developed and validated for quantification of ticagrelor and its Active Metabolite (AM) in human plasma over expected clinical concentrations. Methods: Samples were handled by Liquid-Liquid Extraction (LLE). A linear gradient was applied with a mobile phase composed of formic acid 0.1% and acetonitrile with 0.1% of formic acid using a C18 reversed-phase column. MS spectra were obtained by electrospray ionization in negative mode and optimized at 521.4→360.9 m/z, 477.2→361.2 m/z and 528.1→367.9 m/z transitions for ticagrelor, AM and ticagrelor-d7, respectively. Results: This method allowed rapid elution, in less than 4 minutes, and quantification of concentrations as low as 2 ng/mL for ticagrelor and 1 ng/mL for AM using only 100 μL of human plasma. LLE using hexane/ethyl acetate (50/50) was an optimal compromise in terms of extraction recovery and endogenous compounds interference. Trueness values of 87.8% and 89.5% and precisions of 84.1% and 93.8% were obtained for ticagrelor and AM, respectively. Finally, the usefulness of the method was assessed in a clinical trial where a single 180 mg ticagrelor was orally administered to healthy male volunteers. Pharmacokinetic parameters of ticagrelor and its active metabolite were successfully determined. Conclusion: A sensitive and specific quantification LC-MS-MS method was developed and validated for ticagrelor and its active metabolite determination in human plasma. The method was successfully applied to a clinical trial where a single ticagrelor 180 mg dose was orally administered to healthy male volunteers. The described method allows quantification of concentrations as low as 2 ng/mL of ticagrelor and 1 ng/mL of the metabolite using only 100 μL of plasma.


Author(s):  
Reihaneh Heidarian ◽  
Mansoureh Zahedi-Tabrizi

: Leflunomide (LFM) and its active metabolite, teriflunomide (TFM), have drawn a lot of attention for their anticancer activities, treatment of rheumatoid arthritis and malaria due to their capability to inhibit dihydroorotate dehydrogenase (DHODH) and Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme. In this investigation, the strength of intramolecular hydrogen bond (IHB) in five analogs of TFM (ATFM) has been analyzed employing density functional theory (DFT) using B3LYP/6-311++G (d, p) level and molecular orbital analysis in the gas phase and water solution. A detailed electronic structure study has been performed using the quantum theory of atoms in molecules (QTAIM) and the hydrogen bond energies (EHB) of stable conformer obtained in the range of 76-97 kJ/mol, as a medium hydrogen bond. The effect of substitution on the IHB nature has been studied by natural bond orbital analysis (NBO). 1H NMR calculations show an upward trend in the proton chemical shift of the enolic proton in the chelated ring (14.5 to 15.7ppm) by increasing the IHB strength. All the calculations confirmed the strongest IHB in 5-F-ATFM and the weakest IHB in 2-F-ATFM. Molecular orbital analysis, including the HOMO-LUMO gap and chemical hardness, was performed to compare the reactivity of inhibitors. Finally, molecular docking analysis was carried out to identify the potency of inhibition of these compounds against PfDHODH enzyme.


Sign in / Sign up

Export Citation Format

Share Document