clinical pharmacokinetics
Recently Published Documents


TOTAL DOCUMENTS

1529
(FIVE YEARS 132)

H-INDEX

124
(FIVE YEARS 10)

2022 ◽  
pp. 11-26
Author(s):  
Arthur J. Atkinson

Author(s):  
Kyle C. Molina ◽  
Matthew A. Miller ◽  
Scott W. Mueller ◽  
Edward T. Van Matre ◽  
Martin Krsak ◽  
...  

2021 ◽  
Author(s):  
Tadesse Sheleme

Metformin, the only biguanide oral antidiabetic agent available, was first used clinically in the late 1950s. Metformin remains the first-line pharmacologic treatment for type 2 diabetes patients. It can be used as a single agent or in combination therapy with other antidiabetes agents, including insulin. Metformin is absorbed predominately from the small intestine. It is rapidly distributed following absorption and does not bind to plasma proteins. It is excreted unchanged in urine. The elimination half-life of Metformin during multiple dosages in patients with good renal function is approximately 5 hours.


Author(s):  
Bartlomiej Piechowski-Jozwiak ◽  
Emna Abidi ◽  
Wasim S. El Nekidy ◽  
Julien Bogousslavsky

2021 ◽  
Vol 12 ◽  
Author(s):  
Shiyu He ◽  
Jialu Bian ◽  
Qianhang Shao ◽  
Ying Zhang ◽  
Xu Hao ◽  
...  

Dasatinib is an oral second-generation tyrosine kinase inhibitor known to be used widely in Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) and Ph+ acute lymphoblastic leukemia (ALL). Notably, although a high pharmacokinetic variability in patients and an increased risk of pleural effusion are attendant, fixed dosing remains standard practice. Retrospective studies have suggested that dasatinib exposure may be associated with treatment response (efficacy/safety). Therapeutic drug monitoring (TDM) is gradually becoming a practical tool to achieve the goal of individualized medicine for patients receiving targeted drugs. With the help of TDM, these patients who maintain response while have minimum adverse events may achieve long-term survival. This review summaries current knowledge of the clinical pharmacokinetics variation, exposure-response relationships and analytical method for individualized dosing of dasatinib, in particular with respect to therapeutic drug monitoring. In addition, it highlights the emerging insights into several controversial issues in TDM of dasatinib, with the aim of presenting up-to-date evidence for clinical decision-making and insights for future studies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Leandro Francisco Pippa ◽  
Maria Paula Marques ◽  
Anna Christina Tojal da Silva ◽  
Fernando Crivelenti Vilar ◽  
Tissiana Marques de Haes ◽  
...  

Neurocryptococcosis, a meningoencephalitis caused by Cryptococcus spp, is treated with amphotericin B (AmB) combined with fluconazole. The integrity of the brain-blood barrier and the composition of the cerebrospinal fluid (CSF) may change due to infectious and/or inflammatory diseases such as neurocryptococcosis allowing for the penetration of AmB into the central nervous system. The present study aimed to develop LC-MS/MS methods capable of quantifying AmB in CSF at any given time of the treatment in addition to plasma, plasma ultrafiltrate, with sensitivity compatible with the low concentrations of AmB reported in the CSF. The methods were successfully validated in the four matrices (25 μl, 5–1,000 ng ml−1 for plasma or urine; 100 μl, 0.625–250 ng ml−1 for plasma ultrafiltrate; 100 μl, 0.1–250 ng ml−1 for CSF) using protein precipitation. The methods were applied to investigate the pharmacokinetics of AmB following infusions of 100 mg every 24 h for 16 days administered as a lipid complex throughout the treatment of a neurocryptococcosis male patient. The methods allowed for a detailed description of the pharmacokinetic parameters in the assessed patient in the beginning (4th day) and end of the treatment with AmB (16th day), with total clearances of 7.21 and 4.25 L h−1, hepatic clearances of 7.15 and 4.22 L h−1, volumes of distribution of 302.94 and 206.89 L, and unbound fractions in plasma ranging from 2.26 to 3.25%. AmB was quantified in two CSF samples collected throughout the treatment with concentrations of 12.26 and 18.45 ng ml−1 on the 8th and 15th days of the treatment, respectively. The total concentration of AmB in plasma was 31 and 20 times higher than in CSF. The unbound concentration in plasma accounted for 77 and 44% of the respective concentrations in CSF. In conclusion, the present study described the most complete and sensitive method for AmB analysis in plasma, plasma ultrafiltrate, urine, and CSF applied to a clinical pharmacokinetic study following the administration of the drug as a lipid complex in one patient with neurocryptococcosis. The method can be applied to investigate the pharmacokinetics of AmB in CSF at any given time of the treatment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2669-2669
Author(s):  
Chad C Bjorklund ◽  
Michael Amatangelo ◽  
Jian Kang ◽  
Hsiling Chiu ◽  
Archana Mukhopadhyay ◽  
...  

Abstract Background: Pomalidomide (POM) is an established agent in relapsed/refractory (R/R) multiple myeloma (MM). CC-92480, a novel cereblon E3 ligase modulator (CELMoD ®) agent, is being investigated in R/R MM patients in combination with the proteasome inhibitor (PI) bortezomib (BTZ) and steroid dexamethasone (DEX) (NCT03374085/NCT03989414). Previously, we showed mechanistic synergy of POM/BTZ/DEX in MM cell line models (Bjorklund et al). Here we analyzed the cell autonomous cytotoxic activities of CC-92480 or POM alone and in combination with BTZ/DEX to compare and differentiate their mechanisms of action (MOA). Results: Comparative analysis of the anti-proliferative activity against H929 and MM1.S cell lines revealed that CC-92480 demonstrated a more potent inhibition of proliferation by 100-fold lower dose compared to POM. Combination experiments utilizing a titration of POM or CC-92480 in combination with a 1 hr BTZ pulse, to mimic the clinical pharmacokinetics (+/- DEX co-treatment) showed an enhancement of antiproliferative capacity in both doublet and triplet combinations compared to single agents. Combination indices for POM/BTZ/DEX or CC-92480/BTZ/DEX resulted in values <1 for most combinations indicating a synergistic effect. Additionally, POM or CC-92480 in combination with BTZ or DEX, or in triplet combinations increased induction of apoptosis (>90% for each triplet compared to POM (20%) and CC-92480 (40%). Flow cytometric analysis of Aiolos and Ikaros protein level in MM cells treated with POM/BTZ/DEX or CC-92480/BTZ/DEX resulted in a slight kinetic delay in substrate depletion at early time points (1-4 hr), where the effect is less apparent with CC-92480, and indistinguishable at 24 hr compared to single agent POM or CC-92480 in the clinically relevant concentrations. We performed transcriptomic analyses of H929 cells treated with POM/BTZ/DEX or CC-92480/BTZ/DEX for 24 hrs to identify key pathways responsible for the observed synergistic combination effect. Common pathways dysregulated by POM or CC-92480 included previously identified interferon, protein homeostasis and proliferation gene sets. Gene set enrichment analysis (GSEA) showed many significant pathway differences when comparing the triplets, including general cell cycle progression, cell division and chromatin segregation. Interestingly, genes involved in negative regulation of G 2/M transition were identified as one of the most significant differences between POM/BTZ/DEX and CC-92480/BTZ/DEX. To understand how these pathways contributed to cell cycle effects and apoptosis, we assessed DNA fragmentation by TUNEL in conjunction with cell cycle flow cytometry to examine cell cycle specific apoptotic induction. Temporal assessment (6, 12, 18, 24, and 48 hr treatments) demonstrated accumulation of BrdU incorporation in all cell cycle phases when treated with POM/BTZ/DEX or CC-92480/BTZ/DEX indicating cell death was occurring within all phases. However, there was a marked enhancement of G 2/M BrdU incorporation (80% vs. 40% of G 2/M population) at 18-24 hr when treated with CC-92480/BTZ/DEX compared to POM/BTZ/DEX, or other single agent treatments. Additionally, G 2/M transition-dependent cyclins A and B were shown to be dysregulated by CC-92480. These data indicate that CC-92480 potentiates a G 2/M arrest in combination with BTZ in MM cells. Conclusions: These results demonstrate that CC-92480 alone or in combination with BTZ/DEX elicits a more potent cytotoxic effect on MM cells compared to POM. Importantly, the combination of either POM or CC-92480 with a PI, like BTZ, does not appreciatively affect single agent MOA. We have also identified a key differentiating mechanism of cell autonomous activity for CC-92480 in combination with BTZ/DEX where MM cells enhance apoptotic induction at the G 2/M stage compared to POM. Clinically, this added mechanistic difference suggests a more cytotoxic response in patients treated with CC-92480/BTZ/DEX compared to POM/BTZ/DEX. Disclosures Bjorklund: BMS: Current Employment, Current equity holder in publicly-traded company. Amatangelo: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Kang: BMS: Current equity holder in publicly-traded company. Chiu: Bristol Myers Squibb: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Pourdehnad: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties: No royalty. Hagner: BMS: Current Employment, Current equity holder in publicly-traded company. Thakurta: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company.


Sign in / Sign up

Export Citation Format

Share Document