Metabolic Stability for Drug Discovery and Development

2003 ◽  
Vol 42 (6) ◽  
pp. 515-528 ◽  
Author(s):  
Collen M Masimirembwa ◽  
Ulf Bredberg ◽  
Tommy B Andersson
Author(s):  
Jae Yong Ryu ◽  
Jeong Hyun Lee ◽  
Byung Ho Lee ◽  
Jin Sook Song ◽  
Sunjoo Ahn ◽  
...  

Abstract Motivation Poor metabolic stability leads to drug development failure. Therefore, it is essential to evaluate the metabolic stability of small compounds for successful drug discovery and development. However, evaluating metabolic stability in vitro and in vivo is expensive, time-consuming, and laborious. Additionally, only a few free software programs are available for metabolic stability data and prediction. Therefore, in this study, we aimed to develop a prediction model that predicts the metabolic stability of small compounds. Results We developed a computational model, PredMS, which predicts the metabolic stability of small compounds as stable or unstable in human liver microsomes. PredMS is based on a random forest model using an in-house database of metabolic stability data of 1,917 compounds. To validate the prediction performance of PredMS, we generated external test data of 61 compounds. PredMS achieved an accuracy of 0.74, Matthew’s correlation coefficient of 0.48, sensitivity of 0.70, specificity of 0.86, positive predictive value of 0.94, and negative predictive value of 0.46 on the external test dataset. PredMS will be a useful tool to predict the metabolic stability of small compounds in the early stages of drug discovery and development. Availability and implementation The source code for PredMS is available at https://bitbucket.org/krictai/predms, and the PredMS web server is available at https://predms.netlify.app. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Sanaa Bardaweel

Recently, an outbreak of fatal coronavirus, SARS-CoV-2, has emerged from China and is rapidly spreading worldwide. As the coronavirus pandemic rages, drug discovery and development become even more challenging. Drug repurposing of the antimalarial drug chloroquine and its hydroxylated form had demonstrated apparent effectiveness in the treatment of COVID-19 associated pneumonia in clinical trials. SARS-CoV-2 spike protein shares 31.9% sequence identity with the spike protein presents in the Middle East Respiratory Syndrome Corona Virus (MERS-CoV), which infects cells through the interaction of its spike protein with the DPP4 receptor found on macrophages. Sitagliptin, a DPP4 inhibitor, that is known for its antidiabetic, immunoregulatory, anti-inflammatory, and beneficial cardiometabolic effects has been shown to reverse macrophage responses in MERS-CoV infection and reduce CXCL10 chemokine production in AIDS patients. We suggest that Sitagliptin may be beneficial alternative for the treatment of COVID-19 disease especially in diabetic patients and patients with preexisting cardiovascular conditions who are already at higher risk of COVID-19 infection.


2011 ◽  
Vol 999 (999) ◽  
pp. 1-29
Author(s):  
Jeremy N. Burrows ◽  
Kelly Chibale ◽  
Timothy N.C. Wells

Sign in / Sign up

Export Citation Format

Share Document