Effects of Interleukin-1 and Anti-Inflammatory Drugs on the Degradation of Human Articular Cartilage

Drugs ◽  
1988 ◽  
Vol 35 (Supplement 1) ◽  
pp. 33-41 ◽  
Author(s):  
M. Shinmei ◽  
T. Kikuchi ◽  
K. Masuda ◽  
Y. Shimomura
Author(s):  
CHARIS MERRIHEW ◽  
STEPHAN SOEDER ◽  
DAVID C. RUEGER ◽  
KLAUS E. KUETTNER ◽  
SUSAN CHUBINSKAYA

Author(s):  
Pascal Richette

The general goals of gout therapy are to manage acute flares and to prevent recurrences and prevent or reverse the complications of urate deposition by lowering urate levels. The choice of drug should be made on the basis of the patient’s co-morbidities, other medications, and side effect profile. Treatment of flares can be achieved with non-steroidal anti-inflammatory drugs, colchicine, or corticosteroids (systemic or intra-articular). Interleukin-1 blockers could become an alternative in patients contraindicated for traditional anti-inflammatory agents. Lowering of urate levels below monosodium urate (MSU) saturation point with both a non-pharmacological and pharmacological approach allows to dissolve MSU crystals and to cure gout. Serum urate (SUA) levels should be maintained below 6 mg/dL (360 μ‎mol/L) or below 5 mg/dL (300 μ‎mol/L) in patients with severe gout to facilitate faster dissolution of crystals. Urate-lowering therapy (ULT) should be initiated close to the first diagnosis of gout. Allopurinol and febuxostat are the most widely used xanthine oxidase inhibitors to lower SUA levels. If the SUA target cannot be reached by these agents, uricosurics are indicated, either alone or in combination with a xanthine oxidase inhibitor. In patients with severe tophaceous gout in whom the SUA target cannot be reached with any other available drug, pegloticase is indicated. Since ULT initiation may trigger acute attacks of gout, prophylaxis with an anti-inflammatory agent is recommended, mostly with low-dose colchicine. Of note, patient education, appropriate lifestyle advice, and treatment of comorbidities are also important parts of the management of patients with gout.


1992 ◽  
Vol 284 (2) ◽  
pp. 589-593 ◽  
Author(s):  
P Loulakis ◽  
A Shrikhande ◽  
G Davis ◽  
C A Maniglia

Bovine articular cartilage was cultured both in the presence and in the absence of human recombinant interleukin-1 alpha (IL-1) (100 units/ml). Addition of this cytokine stimulated matrix degradation approx. 3-fold. This increased degradation permitted characterization of the large chondroitin sulphate proteoglycan (aggrecan) fragments accumulating in the media. When compared with controls, the proteoglycans isolated from the medium of cultures treated with IL-1 exhibited a decrease in the Kav. (control 0.25; IL-1-treated 0.37), determined by Sepharose CL-2B chromatography. This decrease in proteoglycan size was accompanied by a decreased ability of these monomers to associate with hyaluronic acid. Thus only 20% of the proteoglycans isolated from the medium of IL-1-treated cultures, compared with 39% for control cultures, had the capacity to form high-M(r) aggregates with hyaluronic acid. SDS/PAGE analysis of the proteoglycans from the media of IL-1-treated cultures demonstrated several large proteoglycan protein-core bands (M(r) 144,000-380,000). The protein-core bands with M(r) 144,000-266,000 exhibited a significantly decreased reactivity with monoclonal antibody 1-C-6 (specific for domains G1 and G2). The N-terminal amino acid sequence of four of these protein-core bands (M(r) 144,000, 173,000, 214,000 and 266,000) yielded sequences LGQRPPV-Y-PQLF(E), AGEGP(S)GILEL-GAP(S)-AP(D)M, GLG-VEL-LPGE and (A)RGSVIL-AKPDFEV-P-A. A comparison of these N-terminal amino acid sequences with the published proteoglycan sequence for bovine nasal cartilage [Oldberg, Antonsson & Heinegård (1987) Biochem. J. 243, 255-259], rat chondrosarcoma [Doege, Sasaki, Horigan, Hassell & Yamada (1987) J. Biol. Chem. 262, 17757-17769] and human articular cartilage [Doege, Sasaki, Kimura & Yamada (1991) J. Biol. Chem. 266, 894-902] permitted assignment of their relative positions on the core protein. Furthermore, on the basis of this similarity to published sequence, putative sites of enzymic cleavage were constructed. These theoretical cleavage sites revealed a glutamic acid residue in the P1 position and an uncharged polar or non-polar residue in the P1′ position.


1990 ◽  
Vol 33 (11) ◽  
pp. 1695-1701 ◽  
Author(s):  
J. J. Nietfeld ◽  
B. Wilbrink ◽  
M. Helle ◽  
J. L. A. M. Van Roy ◽  
W. Den Otter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document