Granulocyte-macrophage colony-stimulating factor (GM-CSF) may improve the seroprotection of hepatitis B vaccine in end-stage renal disease

2006 ◽  
Vol &NA; (1560) ◽  
pp. 9
Author(s):  
&NA;
Blood ◽  
2010 ◽  
Vol 116 (4) ◽  
pp. 631-639 ◽  
Author(s):  
Ioannis Kourtzelis ◽  
Maciej M. Markiewski ◽  
Michael Doumas ◽  
Stavros Rafail ◽  
Konstantinos Kambas ◽  
...  

Abstract Thrombosis is a common complication of end-stage renal disease, particularly in patients on hemodialysis. Although substantial progress has been made in preventing thrombotic complications in various other groups of patients, the mechanisms of thrombosis during hemodialysis require clarification. In this report, we demonstrate that complement activation triggered by hemodialysis biomaterials, and the subsequent generation of the complement anaphylatoxin C5a, results in the expression of functionally active tissue factor (TF) in peripheral blood neutrophils. Because TF is a key initiator of coagulation in vivo, we postulate that the recurring complement activation that occurs during long-term hemodialysis contributes to thrombosis in dialyzed end-stage renal disease patients. Furthermore, we found that complement contributed to the induction of granulocyte colony-stimulating factor, which has been implicated in the pathogenesis of thrombosis in patients treated with the recombinant form of this molecule. Importantly, the inhibition of complement activation attenuated the TF expression and granulocyte colony-stimulating factor induction in blood passing through a hemodialysis circuit, suggesting that the complement system could become a new therapeutic target for preventing thrombosis in patients with chronic renal failure who are maintained on hemodialysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jani Lappalainen ◽  
Nicolas Yeung ◽  
Su D. Nguyen ◽  
Matti Jauhiainen ◽  
Petri T. Kovanen ◽  
...  

AbstractIn atherosclerotic lesions, blood-derived monocytes differentiate into distinct macrophage subpopulations, and further into cholesterol-filled foam cells under a complex milieu of cytokines, which also contains macrophage-colony stimulating factor (M-CSF) and granulocyte–macrophage-colony stimulating factor (GM-CSF). Here we generated human macrophages in the presence of either M-CSF or GM-CSF to obtain M-MØ and GM-MØ, respectively. The macrophages were converted into cholesterol-loaded foam cells by incubating them with acetyl-LDL, and their atheroinflammatory gene expression profiles were then assessed. Compared with GM-MØ, the M-MØ expressed higher levels of CD36, SRA1, and ACAT1, and also exhibited a greater ability to take up acetyl-LDL, esterify cholesterol, and become converted to foam cells. M-MØ foam cells expressed higher levels of ABCA1 and ABCG1, and, correspondingly, exhibited higher rates of cholesterol efflux to apoA-I and HDL2. Cholesterol loading of M-MØ strongly suppressed the high baseline expression of CCL2, whereas in GM-MØ the low baseline expression CCL2 remained unchanged during cholesterol loading. The expression of TNFA, IL1B, and CXCL8 were reduced in LPS-activated macrophage foam cells of either subtype. In summary, cholesterol loading converged the CSF-dependent expression of key genes related to intracellular cholesterol balance and inflammation. These findings suggest that transformation of CSF-polarized macrophages into foam cells may reduce their atheroinflammatory potential in atherogenesis.


Neonatology ◽  
2021 ◽  
pp. 1-7
Author(s):  
Verena Schulte ◽  
Alexandra Sipol ◽  
Stefan Burdach ◽  
Esther Rieger-Fackeldey

<b><i>Background:</i></b> The granulocyte-macrophage-colony-stimulating factor (GM-CSF) plays an important role in surfactant homeostasis. β<sub>C</sub> is a subunit of the GM-CSF receptor (GM-CSF-R), and its activation mediates surfactant catabolism in the lung. β<sub>IT</sub> is a physiological, truncated isoform of β<sub>C</sub> and is known to act as physiological inhibitor of β<sub>C</sub>. <b><i>Objective:</i></b> The aim of this study was to determine the ratio of β<sub>IT</sub> and β<sub>C</sub> in the peripheral blood of newborns and its association with the degree of respiratory failure at birth. <b><i>Methods:</i></b> We conducted a prospective cohort study in newborns with various degrees of respiratory impairment at birth. Respiratory status was assessed by a score ranging from no respiratory impairment (0) to invasive respiratory support (3). β<sub>IT</sub> and β<sub>C</sub> expression were determined in peripheral blood cells by real-time PCR. β<sub>IT</sub> expression, defined as the ratio of β<sub>IT</sub> and β<sub>C</sub>, was correlated with the respiratory score. <b><i>Results:</i></b> β<sub>IT</sub> expression was found in all 59 recruited newborns with a trend toward higher β<sub>IT</sub> in respiratory ill (score 2, 3) newborns than respiratory healthy newborns ([score 0, 1]; <i>p</i> = 0.066). Seriously ill newborns (score 3) had significantly higher β<sub>IT</sub> than healthy newborns ([score 0], <i>p</i> = 0.010). Healthy preterm infants had significantly higher β<sub>IT</sub> expression than healthy term infants (<i>p</i> = 0.019). <b><i>Conclusions:</i></b> β<sub>IT</sub> is expressed in newborns with higher expression in respiratory ill than respiratory healthy newborns. We hypothesize that β<sub>IT</sub> may have a protective effect in postnatal pulmonary adaptation acting as a physiological inhibitor of β<sub>C</sub> and, therefore, maintaining surfactant in respiratory ill newborns.


Sign in / Sign up

Export Citation Format

Share Document