scholarly journals Fabrication of a novel cyanoethyl cellulose substrate for thin-film composite forward osmosis membrane

2019 ◽  
Vol 1 (1) ◽  
pp. 18-32 ◽  
Author(s):  
Ke Zheng ◽  
Shaoqi Zhou

Abstract In this study, cyanoethyl cellulose (CEC) was used as a membrane material, and polyvinylpyrrolidone (PVP) was used as pore-forming agent to prepare the substrates for the thin-film composite (TFC) forward osmosis (FO) membrane for the first time. The experimental results demonstrate that the properties of the substrates were significantly improved after PVP was added. The scanning electron microscope (SEM) images show that a two-sublayer structure, a fringe-like top sublayer and macrovoids with sponge-like wall bottom sublayer, were formed after the addition of PVP. These improvements contributed to improved membrane performance during FO tests. Meanwhile, after adding PVP, the TFC membranes exhibited good water flux, and excellent specific reverse salt flux. For instance, the TFC-M2 exhibited 9.10/20.67 LMH water flux, 1.35/2.24 gMH reverse salt flux, and 0.15/0.11 g/L specific reverse salt flux in FO/pressure-retarded osmosis mode while using 1 M NaCl as the draw solution and deionized (DI) water as the feed solution.

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 260 ◽  
Author(s):  
Yuanyuan Tang ◽  
Shan Li ◽  
Jia Xu ◽  
Congjie Gao

This study reported a series of thin film composite (TFC) membranes with single-walled nanotubes (SWCNTs) interlayers for the forward osmosis (FO) application. Pure SWCNTs with ultrahigh length-to-diameter ratio and without any functional group were applied to form an interconnect network interlayer via strong π-π interactions. Compared to the TFC membrane without SWCNTs interlayer, our TFC membrane with optimal SWCNTs interlayer exhibited more than three times the water permeability (A) of 3.3 L m−2h−1bar−1 in RO mode with 500 mg L−1 NaCl as feed solution and nearly three-fold higher FO water flux of 62.8 L m−2 h−1 in FO mode with the deionized water as feed solution and 1 M NaCl as draw solution. Meanwhile, the TFC membrane with SWCNTs interlayer exhibited significantly reduced membrane structure parameters (S) to immensely mitigate the effect of internal concentration polarization (ICP) in support layer with micro-sized pores in favor of higher water flux. It showed that the pure SWCNTs interlayer could be an effective strategy to apply in FO membranes.


2018 ◽  
Vol 19 (4) ◽  
pp. 1160-1166 ◽  
Author(s):  
Alireza Saeedi-Jurkuyeh ◽  
Ahmad Jonidi Jafari

Abstract In this study, a thin-film composite (TFC) forward osmosis membrane was synthesized and characterized with various concentrations (15%, 16%, 17% and 18%) of polysulfone for the removal of two organic micro-pollutants, namely phenol and benzene from the aqueous solutions. Synthesis of a thin-film composite membrane with a support layer carried out by dissolving an amount of polysulfone polymer and polyvinyl pyrrolidone in N-methyl,2-pyrrolidone via phase inversion process and a thin-film layer of the polyamide M-phenylenediamine (MPD) and 1,3,5-benzene trichloride by interfacial polymerization reaction for the fabrication of the TFC were examined. Water flux and reverse salt flux decreased with increasing the concentration of polysulfone polymer. The composite membranes with polysulfone at 16% and 17% had even higher efficiencies. Also, by increasing the concentration of the draw solution, further phenol and benzene could be removed. The highest rejection rates of phenol (polar) and benzene (nonpolar) were found to be 79% and 90%, respectively. The results showed the capability of the thin-film composite forward osmosis (TFC-FO) membranes for removing organic micro-pollutants from the aqueous solutions under different operating conditions, with the efficiency of removing nonpolar compounds being higher.


RSC Advances ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 6502-6509 ◽  
Author(s):  
Yuan Li ◽  
Yu Yang ◽  
Chen Li ◽  
Li-an Hou

The substrate modified by GO could greatly improve water flux, whereas the GO-functionalized active layer is favorable for biofouling mitigation.


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 237
Author(s):  
Xiao-Xue Ke ◽  
Ting-Yu Wang ◽  
Xiao-Qiong Wu ◽  
Jiang-Ping Chen ◽  
Quan-Bao Zhao ◽  
...  

Electrospun nanofiber with interconnected porous structure has been studied as a promising support layer of polyamide (PA) thin-film composite (TFC) forward osmosis (FO) membrane. However, its rough surface with irregular pores is prone to the formation of a defective PA active layer after interfacial polymerization, which shows high reverse salt leakage in FO desalination. Heat-curing is beneficial for crosslinking and stabilization of the PA layer. In this work, a nanofiber-supported PA TFC membrane was conceived to be cured on a hot water surface with preserved phase interface for potential “defect repair”, which could be realized by supplementary interfacial polymerization of residual monomers during heat-curing. The resultant hot-water-curing FO membrane with a more uniform superhydrophilic and highly crosslinked PA layer exhibited much lower reverse salt flux (FO: 0.3 gMH, PRO: 0.8 gMH) than that of oven-curing FO membrane (FO: 2.3 gMH, PRO: 2.2 gMH) and achieved ∼4 times higher separation efficiency. It showed superior stability owing to mitigated reverse salt leakage and osmotic pressure loss, with its water flux decline lower than a quarter that of the oven-curing membrane. This study could provide new insight into the fine-tuning of nanofiber-supported TFC FO membrane for high-quality desalination via a proper selection of heat-curing methods.


Desalination ◽  
2017 ◽  
Vol 402 ◽  
pp. 1-9 ◽  
Author(s):  
Masahiro Yasukawa ◽  
Shoji Mishima ◽  
Yasuhiro Tanaka ◽  
Tomoki Takahashi ◽  
Hideto Matsuyama

Sign in / Sign up

Export Citation Format

Share Document