micro pollutants
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 73)

H-INDEX

30
(FIVE YEARS 8)

Author(s):  
Simon Mehling ◽  
Tobias Schnabel ◽  
Jörg Londong

Abstract Carrier-bound titanium dioxide catalysts were used in a photocatalytic ozonation reactor for the degradation of micro-pollutants in real wastewater. A photocatalytic immersion rotary body reactor with 36 cm disk diameter was used, which was irradiated using UV-A LEDs. The rotating disks were covered with catalysts based on stainless steel grids coated with titanium dioxide. The dosing of ozone was carried out through the liquid phase via an external enrichment and a supply system transverse to the flow direction. The influence of irradiation power and ozone dose on the degradation rate for photocatalytic ozonation was investigated. In addition, the performance of the individual processes photocatalysis and ozonation were studied. The degradation kinetics of the parent compounds were determined by LC-MS/MS. First-order kinetics were determined for photocatalysis and photocatalytic ozonation. A maximum reaction rate of the reactor was determined, which could be achieved by both photocatalysis and photocatalytic ozonation. At a dosage of 0.4 mg /mg DOC, the maximum reaction rate could be achieved using 75% of the irradiation power used for sole photocatalysis, allowing increases in the energetic efficiency of photocatalytic wastewater treatment processes. The process of photocatalytic ozonation is suitable to remove a wide spectrum of micro-pollutants from wastewater. HIGHLIGHT within the work, reaction rates for the degradation of micropollutants in real wastewater matrix are presented. due to the number of investigated pollutants as well as the practical investigation conditions, a more precise evaluation of the use of photocatalysis and photocatalytic ozonation for wastewater treatment is possible.


2021 ◽  
Vol 44 ◽  
pp. 102414
Author(s):  
Luca Fortunato ◽  
Emre Yarali ◽  
Claudia Sanchez-Huerta ◽  
Thomas D. Anthopoulos

Author(s):  
Areej Alhothali ◽  
Tahir Haneef ◽  
Muhammad Raza Ul Mustafa ◽  
Kawthar Mostafa Moria ◽  
Umer Rashid ◽  
...  

Water pollution due to the discharge of untreated industrial effluents is a serious environmental and public health issue. The presence of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) causes worldwide concern because of their mutagenic and carcinogenic effects on aquatic life, human beings, and the environment. PAHs are pervasive atmospheric compounds that cause nervous system damage, mental retardation, cancer, and renal kidney diseases. This research presents the first usage of palm kernel shell biochar (PKSB) (obtained from agricultural waste) for PAH removal from industrial wastewater (oil and gas wastewater/produced water). A batch scale study was conducted for the remediation of PAHs and chemical oxygen demand (COD) from produced water. The influence of operating parameters such as biochar dosage, pH, and contact time was optimized and validated using a response surface methodology (RSM). Under optimized conditions, i.e., biochar dosage 2.99 g L−1, pH 4.0, and contact time 208.89 min, 93.16% of PAHs and 97.84% of COD were predicted. However, under optimized conditions of independent variables, 95.34% of PAH and 98.21% of COD removal was obtained in the laboratory. The experimental data were fitted to the empirical second-order model of a suitable degree for the maximum removal of PAHs and COD by the biochar. ANOVA analysis showed a high coefficient of determination value (R2 = 0.97) and a reasonable second-order regression prediction. Additionally, the study also showed a comparative analysis of PKSB with previously used agricultural waste biochar for PAH and COD removal. The PKSB showed significantly higher removal efficiency than other types of biochar. The study also provides analysis on the reusability of PKSB for up to four cycles using two different methods. The methods reflected a significantly good performance for PAH and COD removal for up to two cycles. Hence, the study demonstrated a successful application of PKSB as a potential sustainable adsorbent for the removal of micro-pollutants from produced water.


2021 ◽  
pp. 1-41
Author(s):  
Ralte Malsawmdawngzela ◽  
Lalhmun Siama ◽  
Diwakar Tiwari ◽  
Seung-Mok Lee ◽  
Dong-Jin Kim

Author(s):  
Karen Mora-Cabrera ◽  
Carlos Peña-Guzmán ◽  
Arturo Trapote ◽  
Daniel Prats

Abstract This study employs a novel combined pilot plant consisting of an anaerobic reactor followed by a membrane electro-bioreactor (eMBR) to treat domestic water containing selected micro-pollutants of emerging concern (CECs) [ibuprofen (IB), carbamazepine, diclofenac (DCF) and 17α-ethinylestradiol (EE2)]. The first phase operated as a conventional membrane bioreactor to achieve the removal of organic matter [chemical oxygen demand (COD)], the CECs and phosphorus. A removal rate of 96.3% for COD, 94.5% for IB, 37.1% for CMZ, 87.1% for DCF and 96% for EE2 was obtained. In the three subsequent phases, current density (CD) of 5, 10 and 15 A/m2 was applied successively in the eMBR with the aim of investigating the effects on the removal of the former components and the fouling of the membrane. After the application of 5 and 10 A/m2 CD, the removal rate of COD decreased. Regarding phosphorus, a CD of 5 A/m2 was enough to achieve the rate of 97% and the membrane fouling suffered a substantial reduction too. Finally, the experimental results were subject to statistical analysis using the Kruskal–Wallis and Wilcoxon tests to validate the influence of each DC.


Sign in / Sign up

Export Citation Format

Share Document