scholarly journals Comparison of four models to rank failure likelihood of individual pipes

2011 ◽  
Vol 14 (3) ◽  
pp. 659-681 ◽  
Author(s):  
Yehuda Kleiner ◽  
Balvant Rajani

The use of statistical methods to discern patterns of historical breakage rates and use them to predict water main breaks has been widely documented. Particularly challenging is the prediction of breaks in individual pipes, due to the natural variations that exist in all the factors that affect their deterioration and subsequent failure. This paper describes alternative models developed into operational tools that can assist network owners and planners to identify individual mains for renewal in their water distribution networks. Four models were developed and compared: a heuristic model, a naïve Bayesian classification model, a model based on logistic regression and finally a probabilistic model based on the non-homogeneous Poisson process (NHPP). These models rank individual water mains in terms of their anticipated breakage frequency, while considering both static (e.g. pipe material, diameter, vintage, surrounding soil, etc.) and dynamic (e.g. climate, operations, cathodic protection, etc.) effects influencing pipe deterioration rates.

2013 ◽  
Vol 16 (3) ◽  
pp. 649-670 ◽  
Author(s):  
Myrna V. Casillas Ponce ◽  
Luis E. Garza Castañón ◽  
Vicenç Puig Cayuela

In this paper, we propose a new approach for model-based leak detection and location in water distribution networks (WDN), which considers an extended time-horizon analysis of pressure sensitivities. Five different ways of using the leak sensitivity matrix to isolate the leaks are described and compared. The first method is based on the binarization approach. The second, third and fourth methods are based on the comparison of the measured pressure vectors with the leak sensitivity matrix using different metrics: correlation, angle between vectors and Euclidean distance, respectively. The fifth method is based on the least square optimization method. The performance of these methods is compared when applied to two academic small networks (Hanoi and Quebra) widely used in the literature. Finally, the three methods with better performance are applied to a district metering area of the Barcelona WDN using real data.


2010 ◽  
Vol 10 (6) ◽  
pp. 897-906 ◽  
Author(s):  
Yehuda Kleiner ◽  
Amir Nafi ◽  
Balvant Rajani

The structural deterioration of water mains and their subsequent failure are affected by many factors, both static (e.g., pipe material, pipe size, age (vintage), soil type) and dynamic (e.g., climate, cathodic protection, pressure zone changes). This paper describes a non-homogeneous Poisson model developed for the analysis and forecast of breakage patterns in individual water mains, while considering both static and dynamic factors. Subsequently, these forecasted breakage patterns are used to schedule the renewal of water mains in an economically efficient manner, while considering the various associated costs, including economies of scale and scheduled works on adjacent infrastructure. In this paper, he principles of the approach are described briefly and its application is demonstrated with the help of a case study.


2010 ◽  
Vol 3 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Y. Kleiner ◽  
B. Rajani

Abstract. I-WARP is based upon a nonhomogeneous Poisson approach to model breakage rates in individual water mains. The structural deterioration of water mains and their subsequent failure are affected by many factors, both static (e.g., pipe material, pipe size, age (vintage), soil type) and dynamic (e.g., climate, cathodic protection, pressure zone changes). I-WARP allows for the consideration of both static and dynamic factors in the statistical analysis of historical breakage patterns. This paper describes the mathematical approach and demonstrates its application with the help of a case study. The research project within which I-WARP was developed, was jointly funded by the National Research Council of Canada (NRC), and the Water Research foundation (formerly known as the American Water Works Association Research Foundation – AwwaRF) and supported by water utilities from USA and Canada.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1086 ◽  
Author(s):  
Ioan Așchilean ◽  
Mihai Iliescu ◽  
Nicolae Ciont ◽  
Ioan Giurca

This article analyses the relation between the failures that occurred in the water supply network and the road traffic in the city of Cluj-Napoca in Romania. The calculations in this case study were made using the Autodesk Robot Structural Analysis Professional 2011 software. In the case study, the following types of pipes were analysed: steel, gray cast iron, ductile cast iron and high density polyethylene (HDPE). While in most studies only a few sections of pipelines, several types of pipelines and certain mounting depths have been analysed, the case study presented analyses the entire water supply system of a city with a population of 324,576 inhabitants, whose water supply system has a length of 479 km. The results of the research are useful in the design phase of water distribution networks, so depending on the type of pipe material, the minimum depth of installation can be indicated, so as to avoid the failure of the pipes due to road traffic. From this perspective, similar studies could also be carried out regarding the negative influence of road traffic on sewerage networks, gas networks and heating networks.


2015 ◽  
Vol 1 (2) ◽  
pp. 129-134
Author(s):  
Ladislav Tuhovčák ◽  
Miloslav Tauš ◽  
Tomáš Sucháček

The knowledge of the current technical condition of the operated system is in the interest of the owner or operator of public water supply systems. Such information is the starting point when making decisions on investment projects or planning water mains renewal. The submitted paper introduces the methodology of preliminary assessment of the technical condition of water supply systems and outputs of the software application TEA Water, which makes it possible to assess the technical condition of the specific elements of the water supply systems and clear displaying with the presentation of the assessment results for the entire considered water supply system.


Sign in / Sign up

Export Citation Format

Share Document