scholarly journals Changes in stage–flow relation of the East River, the Pearl River basin: causes and implications

2012 ◽  
Vol 44 (4) ◽  
pp. 737-746 ◽  
Author(s):  
Qiang Zhang ◽  
Kun Li ◽  
Vijay P. Singh ◽  
Xiaohong Chen ◽  
Jianfeng Li

Water level and streamflow extracted from 891 hydrological episodes from both dry and flood seasons covering a period of 1954–2009 were analyzed to investigate stage–flow relations. Results indicate the following. (1) Since the early 1990s the low/high flow is increasing/decreasing. The water level, particularly the high level, is consistently decreasing. An abrupt decrease of water level is observed since the early 1990s at the lower East River. (2) Stage–streamflow relation is usually stable in the river reach with no significant bedform morphological changes. Changes in the geometric shape of the river channel are the major cause of the change in the stage–streamflow relation. (3) An abrupt decrease of water level at the Boluo station is mainly the result of abnormally rapid downcutting of the riverbed due to extensive sand dredging within the channel which caused serious headwater erosion. This human-induced modification by downcutting of the river channel may lead to significant hydrological alterations and may have critical implications for flood control, conservation of eco-environment, and also for basin-wide water resources management in the lower East River basin.

2021 ◽  
Vol 13 (7) ◽  
pp. 1384
Author(s):  
Junliang Qiu ◽  
Bowen Cao ◽  
Edward Park ◽  
Xiankun Yang ◽  
Wenxin Zhang ◽  
...  

Flood hazards result in enormous casualties and huge economic losses every year in the Pearl River Basin (PRB), China. It is, therefore, crucial to monitor floods in PRB for a better understanding of the flooding patterns and characteristics of the PRB. Previous studies, which utilized hydrological data were not successful in identifying flooding patterns in the rural and remote regions in PRB. Such regions are the key supplier of agricultural products and water resources for the entire PRB. Thus, an analysis of the impacts of floods could provide a useful tool to support mitigation strategies. Using 66 Sentinel-1 images, this study employed Otsu’s method to investigate floods and explore flood patterns across the PRB from 2017 to 2020. The results indicated that floods are mainly located in the central West River Basin (WRB), middle reaches of the North River (NR) and middle reaches of the East River (ER). WRB is more prone to flood hazards. In 2017, 94.0% flood-impacted croplands were located in WRB; 95.0% of inundated croplands (~9480 hectares) were also in WRB. The most vulnerable areas to flooding are sections of the Yijiang, Luoqingjiang, Qianjiang, and Xunjiang tributaries and the lower reaches of Liujiang. Our results highlight the severity of flood hazards in a rural region of the PRB and emphasize the need for policy overhaul to enhance flood control in rural regions in the PRB to ensure food safety.


2012 ◽  
Vol 28 (2) ◽  
pp. 305-314 ◽  
Author(s):  
Qiang Zhang ◽  
Vijay P. Singh ◽  
Kun Li ◽  
Jianfeng Li

The correct assessment of amount of sediment during design, management and operation of water resources projects is very important. Efficiency of dam has been reduced due to sedimentation which is built for flood control, irrigation, power generation etc. There are traditional methods for the estimation of sediment are available but these cannot provide the accurate results because of involvement of very complex variables and processes. One of the best suitable artificial intelligence technique for modeling this phenomenon is artificial neural network (ANN). In the current study ANN techniques used for simulation monthly suspended sediment load at Vijayawada gauging station in Krishna river basin, Andhra Pradesh, India. Trial & error method were used during the optimization of parameters that are involved in this model. Estimation of suspended sediment load (SSL) is done using water discharge and water level data as inputs. The water discharge, water level and sediment load is collected from January 1966 to December 2005. This approach is used for modelled the SSL. By considering the results, ANN has the satisfactory performance and more accurate results in the simulation of monthly SSL for the study location.


2012 ◽  
Vol 440-441 ◽  
pp. 113-122 ◽  
Author(s):  
Qiang Zhang ◽  
Vijay P. Singh ◽  
Juntai Peng ◽  
Yongqin David Chen ◽  
Jianfeng Li

2021 ◽  
Author(s):  
Qiu Junliang ◽  
Bowen Cao ◽  
Paolo Tarolli ◽  
Wenxin Zhang ◽  
Xiankun Yang

<p>The Pearl River Basin (PRB), as the second largest basin in China and one of the densely populated areas in China, is a critical region that exposes to high flood risks. Thus, it is indispensable to monitor the flooding patterns in PRB, so as to understand the flooding mechanism and better respond to the flood hazards. Previous studies about flood monitoring in PRB were mainly conducted by using gauging data of hydrological stations. However, the flood monitoring results would be prone to deviation in the region where the hydrological stations were sparse or without hydrological stations. Moreover, previous studies mainly focused on the urban flood in metropolis in PRB, neglecting the flood extents in rural area, in which the agriculture lands were constantly inundated by flooding water body. To monitor flood more comprehensively, this study will combine hydrological data, precipitation data with Sentinel-1 images to investigate spatial patterns of flood peak and flood extents in PRB. In addition, this study will also combine flood extents with land cover map to calculate the inundated areas of cropland during flood periods. This study will be valuable for flood mitigation, flood prevention and food guarantee in PRB.</p>


Sign in / Sign up

Export Citation Format

Share Document