Trend, periodicity and abrupt change in streamflow of the East River, the Pearl River basin

2012 ◽  
Vol 28 (2) ◽  
pp. 305-314 ◽  
Author(s):  
Qiang Zhang ◽  
Vijay P. Singh ◽  
Kun Li ◽  
Jianfeng Li
2021 ◽  
Vol 13 (7) ◽  
pp. 1384
Author(s):  
Junliang Qiu ◽  
Bowen Cao ◽  
Edward Park ◽  
Xiankun Yang ◽  
Wenxin Zhang ◽  
...  

Flood hazards result in enormous casualties and huge economic losses every year in the Pearl River Basin (PRB), China. It is, therefore, crucial to monitor floods in PRB for a better understanding of the flooding patterns and characteristics of the PRB. Previous studies, which utilized hydrological data were not successful in identifying flooding patterns in the rural and remote regions in PRB. Such regions are the key supplier of agricultural products and water resources for the entire PRB. Thus, an analysis of the impacts of floods could provide a useful tool to support mitigation strategies. Using 66 Sentinel-1 images, this study employed Otsu’s method to investigate floods and explore flood patterns across the PRB from 2017 to 2020. The results indicated that floods are mainly located in the central West River Basin (WRB), middle reaches of the North River (NR) and middle reaches of the East River (ER). WRB is more prone to flood hazards. In 2017, 94.0% flood-impacted croplands were located in WRB; 95.0% of inundated croplands (~9480 hectares) were also in WRB. The most vulnerable areas to flooding are sections of the Yijiang, Luoqingjiang, Qianjiang, and Xunjiang tributaries and the lower reaches of Liujiang. Our results highlight the severity of flood hazards in a rural region of the PRB and emphasize the need for policy overhaul to enhance flood control in rural regions in the PRB to ensure food safety.


2012 ◽  
Vol 440-441 ◽  
pp. 113-122 ◽  
Author(s):  
Qiang Zhang ◽  
Vijay P. Singh ◽  
Juntai Peng ◽  
Yongqin David Chen ◽  
Jianfeng Li

2014 ◽  
Vol 18 (4) ◽  
pp. 1475-1492 ◽  
Author(s):  
J. Niu ◽  
J. Chen ◽  
B. Sivakumar

Abstract. This study explores the teleconnection of two climatic patterns, namely the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), with hydrological processes over the Pearl River basin in southern China, particularly on a sub-basin-scale basis. The Variable Infiltration Capacity (VIC) model is used to simulate the daily hydrological processes over the basin for the study period 1952–2000, and then, using the simulation results, the time series of the monthly runoff and soil moisture anomalies for its ten sub-basins are aggregated. Wavelet analysis is performed to explore the variability properties of these time series at 49 timescales ranging from 2 months to 9 yr. Use of the wavelet coherence and rank correlation method reveals that the dominant variabilities of the time series of runoff and soil moisture are basically correlated with IOD. The influences of ENSO on the terrestrial hydrological processes are mainly found in the eastern sub-basins. The teleconnections between climatic patterns and hydrological variability also serve as a reference for inferences on the occurrence of extreme hydrological events (e.g., floods and droughts).


Sign in / Sign up

Export Citation Format

Share Document