scholarly journals Molecular detection of Helicobacter pylori in a large Mediterranean river, by direct viable count fluorescent in situ hybridization (DVC-FISH)

2014 ◽  
Vol 12 (4) ◽  
pp. 868-873 ◽  
Author(s):  
Ilias Tirodimos ◽  
Mattheos Bobos ◽  
Evangelos Kazakos ◽  
Anna-Bettina Haidich ◽  
Theodore Dardavessis ◽  
...  

Although the precise route and mode of transmission of Helicobacter pylori are still unclear, molecular methods have been applied for the detection of H. pylori in environmental samples. In this study, we used the direct viable count fluorescent in situ hybridization (DVC-FISH) method to detect viable cells of H. pylori in the River Aliakmon, Greece. This is the longest river in Greece, and provides potable water in metropolitan areas. H. pylori showed positive detection for 23 out of 48 water samples (47.9%), while no seasonal variation was found and no correlation was observed between the presence of H. pylori and indicators of fecal contamination. Our findings strengthen the evidence that H. pylori is waterborne while its presence adds to the potential health hazards of the River Aliakmon.

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1502
Author(s):  
Jorge García-Hernández ◽  
Manuel Hernández ◽  
Yolanda Moreno

Vibrio parahaemolyticus is a human food-borne pathogen with the ability to enter the food chain. It is able to acquire a viable, non-cultivable state (VBNC), which is not detected by traditional methods. The combination of the direct viable count method and a fluorescent in situ hybridization technique (DVC-FISH) makes it possible to detect microorganisms that can present VBNC forms in complex samples The optimization of the in vitro DVC-FISH technique for V. parahaemolyticus was carried out. The selected antibiotic was ciprofloxacin at a concentration of 0.75 μg/mL with an incubation time in DVC broth of 5 h. The DVC-FISH technique and the traditional plate culture were applied to detect and quantify the viable cells of the affected pathogen in artificially contaminated food matrices at different temperatures. The results obtained showed that low temperatures produced an important logarithmic decrease of V. parahaemolyticus, while at 22 °C, it proliferated rapidly. The DVC-FISH technique proved to be a useful tool for the detection and quantification of V. parahaemolyticus in the two seafood matrices of oysters and mussels. This is the first study in which this technique has been developed to detect viable cells for this microorganism.


2003 ◽  
Vol 37 (9) ◽  
pp. 2251-2256 ◽  
Author(s):  
Y. Moreno ◽  
M.A. Ferrús ◽  
J.L. Alonso ◽  
A. Jiménez ◽  
J. Hernández

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Jina Vazirzadeh ◽  
Jamal Falahi ◽  
Sharareh Moghim ◽  
Tahmineh Narimani ◽  
Rahmatollah Rafiei ◽  
...  

Background and Aims. Helicobacter pylori is a common infectious bacterium mostly found in gastroduodenal diseases. The increased prevalence of clarithromycin-resistant H. pylori strains is a major challenge in the successful treatment of infections caused by this organism. The present study is aimed at detecting the clarithromycin resistance pattern of H. pylori strains isolated from gastric biopsies and evaluating point mutations of the 23S rRNA gene. Patients and methods. In the present descriptive cross-sectional study, 165 patients with gastrointestinal disorders, who were referred to the Endoscopy Center of Dr. Shariati Hospital of Isfahan, Iran, were enrolled from April to July 2018. H. pylori infection was diagnosed by culture, and susceptibility of the isolates to clarithromycin was assessed by the E-test. Minimum inhibitory concentration (MIC) values were obtained based on EUCAST recommendations. Also, fluorescence in situ hybridization (FISH) was used to determine point mutations associated with clarithromycin resistance. Results. By using culturing, H. pylori was isolated from 50.3% (83/165) gastric biopsy specimens. The overall frequency of resistance to clarithromycin was 25.3% (21/83) by the E-test. In the resistance genotypic analysis, 19 isolates had mutations. The prevalence of A2143G and A2144G mutations was 68.4% (13/19) and 31.5% (6/19), respectively. A2143C mutation was not tracked in any isolate. Two isolates with MIC>0.5 μg/mL had no mutations that could be related to other mechanisms of resistance. Conclusion. As presented in the study, the high prevalence of clarithromycin-resistant H. pylori due to point mutations of the 23S rRNA gene indicates the necessity of revising the standard treatment regimen based on antibiotic susceptibility pattern of each region.


Sign in / Sign up

Export Citation Format

Share Document