scholarly journals Understanding public perception, knowledge and behaviour for water quality management of the river Yamuna in India

Water Policy ◽  
2018 ◽  
Vol 20 (2) ◽  
pp. 266-281 ◽  
Author(s):  
Fawzia Tarannum ◽  
Arun Kansal ◽  
Prateek Sharma

Abstract The paper aims to understand how the public perceives river water quality and related risks and behaviour. Using the stratified semi-purposive sampling process, the study explores the perception of people residing along the river Yamuna in India. The method applied involved a structured questionnaire survey of 2706 respondents and four focused group discussions with people residing within two kilometres of the river bank. Non-parametric tests such as Kruskal Wallis, Mann Whitney U-test and One-Sample Wilcoxon Signed-Rank Test were used to analyse the data. The findings suggest that the majority of the respondents formulate their perceptions using non-scientific methods like sensorial and heuristics. Perception on sources of pollution is shaped by personal experiences and people do not perceive diffused sources of pollution that affect river water quality. Respondents attributed the pollution in the river to anthropogenic activities and their risk perception was found to be linked to their direct dependence on the river for their daily needs. The paper suggests behavioural change strategies to focus on social, governance, and technological drivers.

2003 ◽  
Vol 38 (4) ◽  
pp. 607-626 ◽  
Author(s):  
Vinod Tare ◽  
Purnendu Bose ◽  
Santosh K. Gupta

Abstract In India, the implementation of river-cleaning operations through River Action Plans (RAPs) conventionally focuses on a reduction in concentrated or point sources of organic loading to the river, and is assessed by monitoring the consequent improvement in river water quality. However, in the case of Indian rivers or river stretches having substantial background pollution due to distributed or non-point loading of organic matter and nutrients, elimination of point sources of pollution may not substantially impact or improve river water quality. It is suggested that implementation of River Action Plans in India under such circumstances must be conducted using a multi-tier approach. The initial emphasis in such cases should be on the selection of priority stretches of the river, where pollution control will have maximum beneficial impact on the citizens, and interception and diversion of all concentrated or point loads of pollution from these stretches. In addition, measures to minimize non-point pollution and visible pollution to the river and initiation of riverfront restoration and development projects are necessary in these priority stretches. Such measures would result in aesthetic improvements, increase the beneficial uses of the river and its surroundings, and generate favorable public perception towards RAPs, though they may not be sufficient to enhance the river water quality to the desired levels. However, as a result of the above actions, public support for funding more expensive and longer-term river cleaning schemes, resulting in comprehensive reduction in organic and nutrient loading to the river from point and non-point sources all along its length, may be generated. The need for this alternative methodology for implementation and assessment of RAPs in India has been illustrated by taking the example of the Ganga Action Plan (GAP) and assessment of its implementation near the city of Kanpur in the state of Uttar Pradesh, India, as a test case.


1996 ◽  
Vol 34 (12) ◽  
pp. 33-40 ◽  
Author(s):  
Y. Hosoi ◽  
Y. Kido ◽  
H. Nagira ◽  
H. Yoshida ◽  
Y. Bouda

The inflow of pollutant load from urban areas and the stagnation of water due to sea water intrusion cause the deterioration of river water quality in tidal zone. In order to improve water quality, various measures such as the reduction of pollutant load by sewage systems, discharge control from sewage treatment plants considering river flow, nutrient removal by aquatic plants, and the dredging of bottom sediments have been examined. The choice of these measures depends on the situation of the river environment and finances. In this study, a field survey was carried out in a typical urban river basin, first. Secondly, on the basis of this survey, a mathematical model was formed to simulate flow and water quality. Several purification alternatives designed for the investigated river basin were comparatively evaluated from the viewpoint of the effect of water quality improvement and their cost. Finally, they were prioritized. Through this case study, a planning process of river water quality management was shown.


2020 ◽  
Vol 42 (10) ◽  
pp. 452-462
Author(s):  
Jinhyo Lee ◽  
Hyunju Ha ◽  
Manho Lee ◽  
Mokyoung Lee ◽  
Taeho Kim ◽  
...  

Objectives : 17 water quality measurement networks (WQMNs, tributaries) in Seoul were analyzed by using NSFWQI and cluster analysis to provide basic data for future river water quality management so that citizens could easily and comprehensively understand the water quality information on the rivers in Seoul.Methods : For the past 3 years (2015~2017), in order to estimate WQI, 9 items, DO (% sat), Fecal coliform, pH, BOD, Temperature change (TC), TP, NO3-, Turbidity and Total solids, were selected from among the 19 water quality data measurement items produced monthly from 17 WQMNs in Seoul. WQI was derived and graded using NSFWQI and cluster analysis was performed using Ward Linkage Method, SOM (Self Organizing Map).Results and Discussion : Water quality of most water quality monitoring networks was BOD Ⅱ grade (slightly good) or higher and TP Ⅲ grade (normal) or higher according to the standard of water quality and water ecosystem river living environment, and NSFWQI was also 64 (Medium)~89 (Good). All showed good water quality. NSFWQI does not show a significant difference by season, so it is believed that it is affected by anthropogenic sources rather than seasonal effects. As a result of examining the correlation between NSFWQI and water quality level according to environmental standards, it was confirmed that R2 has a relatively good correlation with 0.78, and there is no clear difference between the two groups, and through this, it was found that the currently implemented water quality rating system and NSFWQI are well matched. As a result of cluster analysis using ward linkage method and SOM for 17 WQMNs, it was largely divided into 6 groups according to water quality characteristics.Conclusions : It is important to manage pollution sources to systematically manage river water quality as a water resource. It is therefore expected that by converting from the complicated and various water quality information such as is found in this study into a simple water quality index and grouping, the river water quality can be easily understood and can be utilized in the future as basic data for water quality management in Seoul.


2012 ◽  
Vol 15 (4) ◽  
pp. 71-86
Author(s):  
Thang Viet Le ◽  
Triet Minh Lam ◽  
Tan Manh Le ◽  
Tai Manh Pham

The article proposed an appropriate organization modeling for Sai Gon river water quality management based on the analysis having scientific and practical basic about aspects have done and aspects limited of LVS management organization (LVS environmental protection Committee) in past time, lesson learnt from effective LVS management performance of countries in the world as well as based on actual study changes in Sai Gon river water quality in many years and practically coordination management and environmental protection river among local area along river basin. The proposed modeling is feasible and practical aim to protect Sai Gon river water source serving for different purposes such as supply water for domestic demand, industry, irrigation, river landscape – tourism, and waterway etc., towards sustainable development of local area along river basin.


2019 ◽  
Vol 20 (2) ◽  
pp. 538-549
Author(s):  
Maoqing Duan ◽  
Xia Du ◽  
Wenqi Peng ◽  
Cuiling Jiang ◽  
Shijie Zhang

Abstract In northern China, river water originating from or flowing through forests often contains large amounts of oxygen-consuming organic substances, mainly humic substances. These substances are stable and not easily biodegradable, resulting in very high detection values of chemical oxygen demand. However, under natural conditions, the dissolved oxygen demand is not as high. Using experimental values to evaluate river water quality and the impact of human activities on water quality is thus unscientific and does not meet national development goals. In this study, the potential sources of high-concentration chemical oxygen demand in river water in two areas exposed to virtually no anthropogenic activities and strongly affected by humic substances, were analysed. The chemical oxygen demand contributed by humic substances (COD-HSs) was quantified using three methods. The results of water quality monitoring in 2017 and 2018 revealed that the chemical oxygen demand concentrations (5–44 mg/L) predominantly exceeded the standard (15 mg/L). The study results suggest that COD-HSs should be considered separately for objective evaluation and management of water quality, particularly in areas that are seriously affected by COD-HSs, to provide a scientific basis for formulating sustainable water quality management policies.


2009 ◽  
Vol 59 (3) ◽  
pp. 407-416 ◽  
Author(s):  
Bob Crabtree ◽  
Sarah Kelly ◽  
Hannah Green ◽  
Graham Squibbs ◽  
Gordon Mitchell

Complying with proposed Water Framework Directive (WFD) water quality standards for ‘good ecological status’ in England and Wales potentially requires a range of Programmes of Measures (PoMs) to control point and diffuse sources of pollution. There is an urgent need to define the benefits and costs of a range of potential PoMs. Water quality modelling can be used to understand where the greatest impact in a catchment can be achieved through ‘end of pipe’ and diffuse source reductions. This information can be used to guide cost-effective investment by private water companies and those with responsibilities for agricultural, industrial and urban diffuse inputs. In the UK, river water quality modelling with the Environment Agency SIMCAT model is regarded as the best current approach to support decision making for river water quality management and planning. The paper describes how a SIMCAT model has been used to conduct a trial WFD integrated catchment planning study for the River Ribble catchment in the North West of England. The model has been used to assess over 80 catchment planning scenarios. The results are being used support a national assessment of the cost-effectiveness of proposed PoMs.


Sign in / Sign up

Export Citation Format

Share Document